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Abstract 

Due to the increasing crises in energy and environmental factors, the importance of 

renewable energy is increasing. However, it is gaining importance in developing 

photovoltaic energy systems. Therefore, great efforts are made to maximize success 

in accurately modeling PV parameters. Parameter estimation is a complex problem 

and requires advanced design tools such as optimization techniques because the 

current voltage (I–V) characteristics of PVs are nonlinear. This study investigates the 

best technique to estimate the parameters obtained in single-diode and double-diode 

cases. The Grey Wolf Optimization (GWO), Improved Grey Wolf Optimization 

(IGWO), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), 

and Multi-Verse Optimizer (MVO) are the algorithms used in this paper. Apart from 

the literature, this study considers that the PV parameter extraction problem is not 

just an offline optimization problem but also a real-time optimization issue. The 

performance of all methods has been compared with experimental data. The lowest 

error on minimum iteration and highest convergence accuracy have been achieved 

for offline optimization by using IGWO. The results clearly state that the IGWO is 

not usable in real-time applications even though IGWO is the best optimizer in 

offline optimization. 
 

 
1. Introduction 

 

The reasons such as the energy and climate crisis in 

recent years, the limited use of fossil fuels, acid rain, 

carbon emission, and negative ozone changes have 

highlighted the importance of renewable and clean 

energy. Long-term solutions and research are needed 

before environmental problems become more serious 

and irreversible problems. For this reason, renewable 

energy sources such as the sun [1], water [2], and 

wind [3] and their sustainable application areas are 

increasing daily. In addition to the increasing use of 

clean energy in industry, it is becoming increasingly 

common in rural and urban areas. This widespread 

using makes solar systems more and more popular 

due to their potential advantages, ease of installation, 

and efficiency. 

                                                           

*Corresponding author: sedakul@kmu.edu.tr             Received: 20.06.2023, Accepted: 23.11.2023 

Solar systems are one of the growing systems 

in the renewable energy sector. Solar energy systems 

are one of the most common methods of generating 

electricity through photovoltaic (PV) modules. 

Besides, PV systems are preferred due to low 

pollution, noiseless operation, and widespread 

distribution. Sunlights are converted into electricity 

using semiconductor systems [4]. The correct 

modeling and optimization processes of these systems 

are the factors that directly affect the efficiency and 

operating characteristics of the systems. 

Photovoltaic systems have nonlinear 

characteristics depending on variables such as 

semiconductor material characteristics and 

environmental factors such as temperature. Therefore, 

in PV studies, it is essential to compute the correct 

circuit values to obtain the correct cell characteristics 

and operate the system efficiently [5]. In recent 
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studies on this subject, optimization methods are used 

seriously as well as numerical methods. The reason 

for this is that in addition to the values such as open 

circuit voltage (𝑉𝑜𝑐), maximum power (𝑃𝑚𝑝𝑝), short 

circuit current (𝐼𝑠𝑐), the current and voltage 

temperature coefficients (𝐾𝑣; 𝐾𝑖) given in the 

datasheet, the actual circuit parameters used in the 

system are determined. It is expected to be calculated 

by the manufacturers. These parameters are 

photocurrent (𝐼𝑝ℎ), the ideality coefficients of diode 

(n), saturation current (𝐼0), shunt resistance (𝑅𝑠ℎ) and 

series resistance (𝑅𝑠) [6]. 

Models used to show the behavior 

characteristics of PV models are single-diode (SDM) 

and double-diode (DDM) models [7], [8]. In the 

estimation and optimization processes, there are five 

values in the SDM and seven values for the DDM [6]. 

Many methods have been used in finding these 

parameters and obtaining the optimum parameter 

values by determining a particular objective function, 

and studies have been applied on this subject.  

Different optimization studies on the PV 

module have been carried out with different methods 

in recent studies in the literature. Due to the 

weaknesses of deterministic methods, optimization 

algorithms have started to be used to determine 

unknown values of PV modules in studies. These are 

maximum power point tracking (MPPT), parameter 

estimation, maximum efficiency, and minimum cost 

optimization studies. In [6], the flexible particle 

swarm optimization (FPSO) based approach is used 

to extract the values of PV cell models to arrive the 

maximum power point. It is compared with known 

methods to demonstrate the proposed adequacy of the 

approach. In another parameter estimation study [9], 

the Stochastic Fractal Search (SFS) technique was 

used. The SFS-based method has been tested for 

different situations using the SDM and DDM to 

evaluate its performance. Whippy Harris Hawks 

Optimization (WHHO) [10] was preferred because of 

its effectiveness in practical application. According to 

the literature research, the optimization approaches 

used to extract the PV parameters are Harmony 

Search-based Algorithm (HS) [11], Simulated 

Annealing (SA) [12], Bird Mating Optimizer (BMO) 

[13], Genetic Algorithm (GA) [14], Teaching 

Learning Based Optimization (TLBO) [15], [16],  

Artificial Bee Colony Algorithm (ABC) [17], Mine 

Blast Algorithm (MBA) [18], Moth–Flame Optimizer 

(MFO) [19], Whale Optimizer [20], Flower-

Pollinating Optimization (FPO) [21], Cat Swarm 

Optimization (CSO) [22], water cycling optimization 

[23], Wind Driven Optimization (WDO) [24], Jaya 

optimization [25], Sunflower Optimization (SFO) 

[26], Enriched HHO (EHHO) [27], Improved 

Opposition-Based Whale Optimization Approach 

(IWOA) [28], Slime Mould Optimization (SMA) 

[29], Springy whale optimization  (SWOA) [30], Bald 

Eagle Search (BES) Algorithm [31], Improved 

Marine Predators Algorithm [32], Jellyfish Search 

Optimizer [33], War Strategy Optimization [34], 

Improved Honey Badger Algorithms [35], Musical 

chairs algorithm [36], Honey Badger Algorithm [37], 

Artificial Ecosystem Optimization Algorithm [38], 

Tuna Swarm Optimization [39], respectively. 

Nowadays, where renewable energy is 

essential, the role of photovoltaic (PV) systems in 

energy production is increasing. However, optimizing 

accurate parameters is of great value for these systems 

to work effectively and efficiently. In this context, 

getting the PV module design with optimized 

parameters increases energy and minimizes system 

costs. Extracting this output from the traditional 

method is complex and time-consuming, so using 

metaheuristic techniques in this field has great 

potential. 

When the methods and performance 

evaluations used in studies on obtaining the 

parameters of PV models in the literature are 

examined, it is seen that there are still unused methods 

for obtaining values in SDM and DDM. Moreover, 

along with the literature, this study investigates the 

best method for real-time estimation of PV 

parameters.  

This study aims to examine five different 

metaheuristics to extract the release of PV module 

design: GWO, IGWO, MVO, WOA, and SCA. 

Additionally, whether these techniques are suitable 

for real-time applications will be evaluated within the 

scope of this study. The main contributions of this 

study are listed below: 

 IGWO was first used to solve SDM (five unknown 

parameter extraction) and DDM (seven unknown 

parameter extraction). 

 The PV unknown parameter extraction problem is 

considered a real-time problem. 

 For this problem, IGWO, GWO, SCA, WOA, and 

MVO calculation time is calculated. 

 The method that provides the best results in the 

shortest time is investigated among the five 

methods. 

The rest of the paper has these sections: The 

SDM and DDM is explained in Section 2. The meta-

heuristic methods that are implemented is described 

in material and methods which is Section 3. Section 4 

demonstrates the results and discussion of the 
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optimization data. Section 5 concludes the paper with 

discussion and future works. 

 

2. Problem Formulation 

 

Since PV modules are semiconductor structures, I-V 

structures are characteristically similar to diodes. 

Therefore, the parameters are found as different 

values over time due to the nonlinear characteristic of 

the PV structure. Therefore, SDM and DDM are the 

most preferred models in equivalent circuit modeling 

[40]. 

 

2.1. Single Diode 

 

Figure 1 shows the equivalent circuit of the SDM. 

This circuit includes the following circuit elements, 

respectively: a current source, a diode in parallel with 

the current source, a semiconductor, and a shunt 

(𝑹𝒔𝒉) and a series (𝑹𝒔) resistor that models the ohmic 

losses in leakage current [41]. 

Figure 1. Single diode model of PV equivalent circuit. 
 

The output current (𝐼𝑝𝑣) can be formulated as 

in Eq.1 [42]: 
 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝐷 − (
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
) (1) 

 

where 𝑉𝑝𝑣 is the output voltage. The current (𝐼𝐷) 

flowing through the diode is expressed as in Eq.2 

[42]: 

 

𝐼𝐷 = 𝐼0 [𝑒𝑥𝑝 (
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑉𝑡𝛼
) − 1] (2) 

 

α is the ideality coefficient of diode. The thermal 

voltage (𝑉𝑡) used in Eq.2 is calculated as in Eq.3 [42]: 

 

𝑉𝑡 =
𝑁𝑠𝑘𝑇

q
 (3) 

 

where 𝑘, 𝑞, and 𝑇 are the Boltzmann constant, electron 

charge, and operating temperature, respectively. The 

photo-generated current (𝐼𝑝ℎ) is shown as Eq.4 [42]: 

 

𝐼𝑝ℎ = 𝐼𝑝ℎ−𝑆𝑇𝐶 + 𝐾𝑖(𝑇 − 𝑇𝑆𝑇𝐶) × (
𝐺

𝐺𝑆𝑇𝐶
) (4) 

 

where 𝑇𝑆𝑇𝐶, 𝐼𝑝ℎ−𝑆𝑇𝐶 and 𝐺𝑆𝑇𝐶 are the temperature at 

standard test condition, photocurrent at standard test 

condition, and irradiance at standard test condition 

(1000𝑊/𝑚2), respectively. 𝐼𝑝ℎ−𝑆𝑇𝐶 is calculated as 

Eq.5 [42]: 

 

𝐼𝑝ℎ−𝑆𝑇𝐶 = 𝐼𝑠𝑐−𝑆𝑇𝐶 (
𝑅𝑠 + 𝑅𝑠ℎ
𝑅𝑠

) (5) 

 

The reverse saturation current (𝐼0) is calculated 

as follows [42]: 

 

𝐼0 =
𝐼𝑝ℎ−𝑆𝑇𝐶 − (𝑉𝑜𝑐−𝑆𝑇𝐶/𝑅𝑠ℎ)

𝑒𝑥𝑝 (
𝑉𝑜𝑐−𝑆𝑇𝐶
𝛼𝑉𝑡−𝑆𝑇𝐶

) − 1
 (6) 

 

Based on all these calculations, five parameters 

(𝐼𝑝ℎ, 𝐼0, α, 𝑅𝑠 and 𝑅𝑠ℎ) requires optimization for the 

single-diode model. 
 

2.2. Double Diode 
 

The SDM does not give good results, especially in 

low irradiance [37]. Therefore, the DDM is preferred 

to increase the calculation accuracy. Figure 2 shows 

the equivalent circuit of DDM. As illustrated in the 

figure, the first of the two diodes acts as a rectifier and 

the second account for the current effect from 

recombination effects. In this way, more precise I-V 

characteristics are obtained. 
 

 
Figure 2. DDM of PV equivalent circuit. 

 

The output current of the system (𝐼𝑝𝑣) is shown as: 

 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 − (
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
) (7) 
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Here 𝐼𝐷1, 𝐼𝐷2 are diode currents and calculated like 

Eq.8 and Eq.9: 

 

𝐼𝐷1 = 𝐼01 [𝑒𝑥𝑝 (
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑉𝑡𝛼1
) − 1] (8) 

𝐼𝐷2 = 𝐼02 [𝑒𝑥𝑝 (
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑉𝑡𝛼2
) − 1] (9) 

 

where 𝑉𝑡, 𝑉𝑝𝑣 are the same in Eq.2. The reverse 

saturation currents in each diode are calculated as 

follows: 
 

𝐼01 =
𝐼𝑝ℎ−𝑆𝑇𝐶 − (𝑉𝑜𝑐−𝑆𝑇𝐶/𝑅𝑠ℎ)

𝑒𝑥𝑝 (
𝑉𝑜𝑐−𝑆𝑇𝐶
𝛼1𝑉𝑡−𝑆𝑇𝐶

) − 1
 (10) 

 

𝐼02 =
𝐼𝑝ℎ−𝑆𝑇𝐶 − (𝑉𝑜𝑐−𝑆𝑇𝐶/𝑅𝑠ℎ)

𝑒𝑥𝑝 (
𝑉𝑜𝑐−𝑆𝑇𝐶
𝛼2𝑉𝑡−𝑆𝑇𝐶

) − 1
 (11) 

 

Based on all these calculations, seven 

parameters (𝐼𝑝ℎ, 𝐼01, 𝐼02, 𝛼1, 𝛼2, 𝑅𝑠 and 𝑅𝑠ℎ) requires 

optimization for the double-diode model. 
 

2.3. Real Time Optimization for PV 
 

The optimization time must be short in the PV panel 

production process for several reasons. This can both 

reduce costs and increase production capacity and 

product quality. The first reason is that PV production 

consists of certain stages, and correct optimization of 

each stage can increase the production speed. A rapid 

optimization process reduces delays on the 

production line and shortens the overall production 

time. 

The second reason is that the materials used 

to manufacture solar panels are generally costly. 

Rapid optimization can minimize material waste, 

which in turn can reduce costs by optimally 

optimizing material usage. The third reason is that 

during the production process, it is essential to control 

the quality of the panels. Fast optimization processes 

enable immediate intervention when a production 

error is detected, thus reducing the number of 

defective products. Another reason is that solar panel 

demand may vary depending on technological 

developments or economic factors. Rapid 

optimization allows the production process to adapt to 

such demand changes quickly. Any delay or 

disruption in the production process can result in 

additional costs, from energy usage to labor. A fast 

and effective optimization process can avoid these 

extra costs. 
 

3. Material and Methods 

 

Section 3 discusses the algorithms used in this paper 

with their mathematical model. 

 

3.1. Grey Wolf Optimizer (GWO) 
 

The GWO is a heuristic algorithm developed in 2014 

[40]. The hunting behavior of grey wolves inspires the 

GWO algorithm. They are hierarchically classified into 

alpha, beta, delta, and omega groups. The alpha team is 

a dominant species responsible for making decisions 

such as hunting, sleeping places, and waking time. The 

beta group, the second layer of the hierarchy, assists the 

alpha wolves in making decisions and other activities. 

The delta group and the omega group represent the 

lowest-ranked grey wolves. 

The hunting is a fascinating social behavior of 

grey wolves alongside the social interactions of wolves. 

To design GWO, First, we need to define the social 

hierarchy of wolves. The best, second, third, and worst 

candidate solutions are alpha, beta, delta, and omega. 

There are three main parts of the hunting method, the 

encircling prey, the hunting, and the attacking prey. 

The grey wolf can randomly update its position 

around its hunt using Eq. 12 and 13. The encircling prey 

can be formulated as below: 

 

𝐷 = |𝐶𝑋𝑝(𝑡) − 𝑋(𝑡)|  (12) 

 

𝑋(𝑡 + 1) = |𝑋𝑝(𝑡) − 𝐴𝐷| (13) 

 

Here, t symbolizes the iteration value, 𝐴 and 𝐶 

represent the coefficients, 𝑋𝑝 the location of the hunt, 

𝑋 the location of an agent. The 𝐴 and 𝐶 are calculated 

as follows: 
 

𝐴 = |2𝑎𝑟1 − 𝑎| (14) 
 

𝐶 = |2𝑎𝑟2| (15) 
 

The a is the parameter that linearly decreases 

from 2 to 0 by the iterations. The 𝑟1 and 𝑟2 are random 

values in the range of [0, 1]. 

α, β and δ species of grey wolves have 

extraordinary hunting abilities. They know the current 

location of their prey. Therefore, the best three solution 

candidates are recorded, and the other wolves are 

allowed to update their locations relative to the 

positions of the best search wolves using below  

Eq. 16-18: 
 

𝐷𝑎 = |𝐶1𝑋𝑎 − 𝑋| 
𝐷𝛽 = |𝐶1𝑋𝛽 − 𝑋| 

(16) 
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𝐷𝛿 = |𝐶1𝑋𝛿 − 𝑋| 
 

𝑋1 = |𝑋𝑎 − 𝐴1𝐷𝑎| 

𝑋2 = |𝑋𝛽 − 𝐴2𝐷𝛽|  

𝑋3 = |𝑋𝛿 − 𝐴3𝐷𝛿| 

(17) 

𝑋(𝑡 + 1) =
𝑋1 + 𝑋2 + 𝑋3

3
 (18) 

 

At the exploitation (attacking prey) stage, a 

value is reduced, and therefore the limit of variation 

of A is reduced. When A has random values in the  

[-1,1] range, the search agent's next position will be 

anywhere between its current location and the hunt. 

Detailed coverage of GWO can be found in [40]. 

 

3.2. Improved Grey Wolf Optimizer (IGWO) 

 

IGWO is designed to minimize the imbalance 

between the exploration and exploitation of the GWO 

method. The IGWO algorithm is inspired by the 

dimension-learning-based-hunting (DLH) wolves in 

nature. 

In the beginning, wolves (𝑁: number of 

agents) are randomly distributed in the search space 

in the limit of [𝑙𝑖, 𝑢𝑗]. 

 

𝑋𝑖𝑗 = 𝐼𝑗 + 𝑟𝑎𝑛𝑑𝑗 [0,1](𝑢𝑗 − 𝑙𝑗) 

𝑖Є[1, 𝑁] , 𝑗Є[1, 𝐷] 
(19) 

 

𝑋𝑖(𝑡) = {𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝐷} represents the 𝑖𝑡ℎ 

position in the 𝑡𝑡ℎ iteration (𝐷=dimension). The 

population is recorded in a matrix with 𝑁 rows and 𝐷 

columns. In the movement phase, The IGWO 

computes the next position of the wolf 𝑋𝑖(𝑡). For this 

computation, IGWO uses the wolf's different 

neighbors and a randomly selected agent from the 

matrix. The 𝑅𝑖(𝑡) is indicates the radius between the 

current location  𝑋𝑗(𝑡) and the location of the 

candidate 𝑋𝑗𝐺𝑊𝑂
(𝑡 + 1). The 𝑅𝑖(𝑡) is computed by 

Eq. 20. 

 

𝑅𝑖(𝑡) = || 𝑋𝑗(𝑡) − 𝑋𝑗𝐺𝑊𝑂
(𝑡 + 1)|| (20) 

 

𝑁𝑖(𝑡) = { 𝑋𝑗(𝑡)| 𝐷𝑖( 𝑋𝑗(𝑡),  𝑋𝑗(𝑡))

≤  𝑅𝑖(𝑡),  𝑋𝑗(𝑡) Є 𝑀𝑎𝑡𝑟𝑖𝑥} 
(21) 

 

The 𝑁𝑖(𝑡) is the neighbor of  𝑋𝑗(𝑡). It is 

calculated by Eq. 21. Here,  𝐷𝑖 is the Euclidean 

interval between  𝑋𝑗(𝑡) and  𝑋𝑖(𝑡). 
 
𝑋𝑖𝐷𝐿𝐻,𝑑(𝑡 + 1) =  𝑋𝑖,𝑑 + 𝑟𝑎𝑛𝑑[0,1]( 𝑋𝑛,𝑑(𝑡)

−  𝑋𝑟,𝑑(𝑡)) 
(22) 

 

𝑋𝑖𝐷𝐿𝐻,𝑑(𝑡 + 1) is the new position of DLH 

based model, calculated using Eq. 23. Here, 𝑛 is the 

number of wolves, and 𝑑 is the dimension. 

 
𝑋𝑖(𝑡 + 1) = 

{
𝑋𝑖𝐺𝑊𝑂

(𝑡 + 1), 𝑖𝑓 𝑓 (𝑋𝑖𝐺𝑊𝑂
(𝑡 + 1)) < 𝑓 (𝑋𝑖𝐷𝐿𝐻(𝑡 + 1))

𝑋𝑖𝐷𝐿𝐻(𝑡 + 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(23) 

Detailed coverage of IGWO can be found 

in [41]. 

 

3.3. Multi-Verse Optimizer (MVO) 

 

MVO is an optimization method inspired by multi-

verse theory [42]. According to multi-verse theory, it 

is believed that there is more than one big bang theory 

[43] that accepts the universe started with a explosion 

and each explosion causes the birth of a universe [44]. 

The MVO method considers each solution candidate 

as a universe. Also, MVO assumes that each 

parameter in the solution candidate is a member in 

that universe. The MVO method assigns each solution 

a value called the inflation rate. The inflation 

parameter is a value to the fitness function of the 

solution candidate. 

There are three concepts in the MVO method: 

white holes, black holes, and wormholes. These three 

concepts are used in order to explore search spaces by 

MVO. If the inflation rate is high, the white hole 

probability is high, and the black hole probability is 

low. The wormholes are used for the random 

movement of objects toward the best universe. 

The white/black hole tunnels are modeled by 

the roulette wheel mechanism. In each iteration, the 

universes are ranked according to their inflation 

parameter, and one is chosen as a white hole. The 

solution matrix (Universe-U) is calculated as Eq. 24: 

 

𝑈 =
𝑋1
1 … 𝑋1

𝑑

⋮ ⋮ ⋮
𝑋𝑛
1 … 𝑋𝑛

𝑑
 (24) 

 

where d and n symbolise the amount of variables and 

universes. 𝑋𝑖
𝑗
 symbolizes the 𝑗𝑡ℎ parameter of the 𝑖𝑡ℎ 

universe. 𝑈𝑖: universe 𝑖, 𝑁𝐼: normalized inflation rate. 

 

𝑋𝑖
𝑗
= {

𝑋𝑘
𝑗
𝑟1 < 𝑁𝐼(𝑈𝑖)

𝑋𝑘
𝑗
𝑟1 ≥ 𝑁𝐼(𝑈𝑖)

 (25) 
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The random number is symbolized by 

𝑟1 [0,1]. 𝑋𝑘
𝑗
𝑟1 is the solution candidate by the roulette 

wheel mechanism method. 

Wormhole tunnels are assumed to be between 

a universe and the best universe created to provide 

local varies for each universe and have a high 

probability of improving the inflation parameter. The 

formulation of this mechanism is as follows: 

 

𝑋𝑖
𝑗

=

{
 
 

 
 𝑋𝑗 + 𝑇𝐷𝑅 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟4 + 𝑙𝑏𝑗) 𝑟3 < 0.5  

𝑋𝑗 − 𝑇𝐷𝑅 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟4 + 𝑙𝑏𝑗) 𝑟3 ≥ 0.5   
𝑟2 < 𝑊𝐸𝑃             

          

𝑋𝑖
𝑗
                                                                          𝑟2 < 𝑊𝐸𝑃             

 

 

(26) 

Xj shows the 𝑗𝑡ℎ parameter of the best 

universe, TDR and WEP are coefficients, lbj and ubj 

indicate the minimum limit of 𝑗𝑡ℎ variable 𝑋𝑖
𝑗
 

indicates the 𝑗𝑡ℎ parameter of 𝑖𝑡ℎ universe, and 𝑟2, 𝑟3, 

and 𝑟4 are random values in the range of [0, 1].  

 

𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 (
𝑚𝑎𝑥 −𝑚𝑖𝑛

𝐿
) (27) 

 

where min=0.2 and max=1, l=iteration, and L= the 

maximum iteration.  

 

𝑇𝐷𝑅 = 1 − (
𝑙1/𝑝

𝐿1/𝑝
) (28) 

 

where p=6 represents the exploitation accuracy. 

Detailed coverage of MVO can be found in [42]. 

 

3.4. Whale Optimization Algorithm (WOA) 

 

The WOA approach is inspired by humpback whales 

(Megaptera novaeangliae) [45]. Megaptera 

novaeangliae have specific hunting techniques called 

bubble-net feeding [46]. They prefer to hunt little prey 

by creating bubbles [47]. There are three main stages 

in the WOA; encircling prey, spiral bubble-net 

feeding maneuver, and search for prey. 

The WOA algorithm assumes that the 

optimum value is the prey in the encircling prey stage. 

Thus, every search agent tries to reach the optimal 

value by Eq. 29.  

 

𝐷 = |𝐶𝑋𝑝(𝑡) − 𝑋(𝑡)|  (29) 

 

𝑋(𝑡 + 1) = |𝑋𝑝(𝑡) − 𝐴𝐷| (30) 

 

where 𝑋𝑝 the location of the best solution candidate, 

𝑋(𝑡) is the location of a search agent in the 𝑡𝑡ℎ 

iteration. The A and C values are coefficients 

calculated in Eq. 31 and 32, respectively. In these 

equations, 𝑎 is the value linearly decreased from 2 to 

0, and 𝑟 is the random value between 0 and 1. 

 

𝐴 = |2𝑎𝑟1 − 𝑎|  (31) 

 

𝐶 = |2𝑎𝑟2| (32) 

 

The second main step of WOA is the bubble 

net attacking stage, which is an exploitation phase. 

The humpback whale attacks prey by using a 

Shrinking encircling mechanism. The shrinking 

encircling mechanism is mathematically formulated 

as Eq. 33. 

 

𝑋(𝑡 + 1) = 𝐷′𝑒𝑏𝑙𝑐𝑜𝑠(2𝜋𝑙) + 𝑋(𝑡), 
𝐷′ = 𝑋𝑝(𝑡) − 𝑋(𝑡) 

(33) 

 

where b indicates the constant value, the b value 

defines the size of the logarithmic spiral. The l is a 

random value range of [−1,1]. In the WOA, there is a 

probability of 50% for updating the location of 

whales. WOA chooses between the shrinking 

encircling mechanism or the spiral model as Eq. 34. 

(𝑝: random number) 

 

𝑋(𝑡 + 1)

= {
𝑋𝑝(𝑡) − 𝐴𝐷                              𝑖𝑓 𝑝 < 0.5

𝐷′𝑒𝑏𝑙 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋(𝑡)           𝑖𝑓 𝑝 ≥ 0.5
 

(34) 

 

The last step of WOA is the search for the 

hunt stage, which is the exploration phase. The WOA 

explores the search spaces using Eq. 29-30. Detailed 

coverage of WOA can be found in [45]. 

 

3.5. Sine Cosine Algorithm (SCA) 

 

The SCA is a metaheuristic method proposed by [48]. 

Initial, the SCA produces a random set of solutions. 

Then, according to its objective function value, it 

chooses the best individual solution as a target for 

other solutions. Then, each individual in the first 

population updates their location concerning the best 

solution using Eq. 35-36. 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑇 + 𝑟1 sin 𝑟2 |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑇| (35) 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑇 + 𝑟1 cos 𝑟2 |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑇| (36) 
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where 𝑋𝑖
𝑇 is the candidate solution of the population 

on the 𝑡𝑡ℎ iteration and 𝑃𝑖
𝑡 is the best solution 

obtained. The 𝑟1, 𝑟2 and 𝑟3 are the random values. 

 

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑇 + 𝑟1 sin 𝑟2  |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑇|, 𝑟4 < 0.5

𝑋𝑖
𝑇 + 𝑟1 cos 𝑟2  |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑇|, 𝑟4 ≥ 0.5

 (37) 

 

The parameter 𝑟1 determines the updated 

direction in the gap between or outside the best 

solution. The 𝑟2 parameter determines the update 

distance based on the best solution. The 𝑟3 parameter 

introduces 𝑎 random weight to emphasize 

stochastically (𝑟3 > 1) or lessen (𝑟3 < 1) the impact of 

the target in defining distance. The parameter 𝑟4 

switches equally between the sine and cosine values 

in Eq. 37. 

 

𝑟1 = 𝑎 − 𝑡 
𝑎

𝑇
 (38) 

 

The sine and cosine spacing is reduced during 

optimization using Eq. 38 to achieve a proper balance 

between exploration and exploitation in SCA. The 𝑡, 
𝑇, and 𝑎 symbolize the current iteration, maximum 

iteration, and constant. Detailed coverage of SCA can 

be found in [45], [48]. 

 

3.5. Sine Cosine Algorithm (SCA) 

 

This section introduces the fitness function and 

solution clusters for the PV parameter extraction 

issue. The unknown PV module parameters are 

computed using a fitness function defined based on 

the solution cluster. The solution cluster consists of 

unknown PV module parameters and affects the 

fitness function value. 

There are five parameters in the solution 

cluster for the SDM {𝐼𝑝ℎ, 𝐼0, 𝑁𝑠, 𝑅𝑠, 𝑅𝑠ℎ} while 

double diode cluster {𝐼𝑝ℎ, 𝐼1, 𝐼2, 𝑁1, 𝑁2, 𝑅𝑠, 𝑅𝑠ℎ} 

consists of seven parameters. This paper uses an error 

function to extract the parameters correctly. An error 

function depicts the difference between the computed 

and measured data. This paper considers the error 

function as the fitness function (objective function). 

The objective function of PV parameter estimation 

could be described like the mean square error between 

the computed and measured currents, as shown in 

Eq. 39. (𝑁: number of measured points, 𝐹𝐹: fitness 

function) 

 

     𝐹𝐹 =
∑  (𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑)

2𝑁
𝑘=1

𝑁
 (39) 

 

The measured data used in this study is 

referred from [49]. 

 

4. Experiment and Results 

 

Section 4 presents the case studies to evaluate the 

IGWO based PV parameter extraction model 

performance. The cases of the SDM and the DDM are 

investigated. The real measurement data is used to 

compare the results. The output is explained with 

graphs and tabular forms. 

This study has written all optimization 

methods on the MATLAB platform. The accuracy of 

each method has been evaluated with CEC 

benchmark (Congress of Evolutionary Computation) 

functions [50]. The simulations have been performed 

using an I7 7500U Intel 2.7 GHz and 16 GB RAM. 

Each code has run 25 times to obtain the main results. 

 

4.1. Case 1: Single Diode 

 

Figure 3 shows the fitness function graph of the 

optimization methods for extracting PV values. In 

addition, it concluded that the IGWO algorithm 

converges faster than others. The IGWO achieves the 

best value of 0.0416 in the 15𝑡ℎ iteration, while the 

GWO, the second-best method, reaches the best value 

in the 28𝑡ℎ. Five methods reach the best result 

(0.0416). Figure 3 shows that the MVO is the worst 

convergence method for this model. The MVO 

reaches the best value in about the 375𝑡ℎ iteration. 

The SCA and WOA achieve the results on the 140𝑡ℎ 

and 105𝑡ℎ iterations. 

 

 
Figure 3. The convergence graph for the SDM. 

 

One of the exciting outputs of this study is the 

computation time results. Figure 4 shows the 

comparison of the calculation time results of each 

method. Although Figure 3 clearly shows that the 

IGWO is the best convergence method among the 
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others, the results of Figure 4 state that The IGWO is 

the slowest method, with 2.3708 seconds.  
 

 
Figure 4. The computation time for single diode 

model. 

 

For real-time optimization analysis, getting 

the best value in the minimum time [51]. Each 

algorithm runs with 1000 iterations. One iteration of 

IGWO spent 2.37 ms time. IGWO reach the best 

results on the 15𝑡ℎ iteration, which equals 35,55 ms 

(15×2.37). If the same calculation is done for GWO, 

SCA, MVO, and WOA, the results are 9.4977 ms 

(0.3392×28), 41.6488 ms (0.2228×140), 155.4196 

ms (0.4145×375) and 30.0418 ms (0.2861×105), 

respectively. Thus, in real time, the GWO and WOA 

solve this problem faster than IGWO. 

Figure 5 shows the I-V polarization curve of 

SDM for further validation of IGWO success. The 

blue colored curve is the curve of the experiment data 

gathering from [49]. The red circle represents the 

IGWO results. It can be concluded from Figure 5 that 

there is an exact match between the IGWO results and 

the measurement results in the I-V curve. 

 

 
Figure 5. The I-V Polarization curve for SDM. 

 

A comparison between the optimal unknown 

parameter output for the single diode case has been 

presented for more validation. Table 1 indicates the 

outputs of five methods that extract the PV parameters 

for a SDM. 

 

 
Table 1. The unknown parameter results in the single diode. 

Parameters GWO IGWO MVO SCA WOA 

𝑅𝑠ℎ 1.237515 1.236925 1.237425 1.235133 1.236917 

𝑅𝑠 0.421066 0.421976 0.140933 0.424598 0.422377 

𝛼 1.630063 1.04896 1.99602 1.000001 1.999988 

𝐼0 0.605225 0.007517 0.876953 0.00001 0.24931 

𝐼𝑝ℎ 0.999276 0.999833 0.886133 0.999999 0.999994 

 
Table 2. Friedman ranking test results for SDM. 

Algorithms GWO IGWO MVO SCA WOA 

Friedman Rankings 2 1 5 4 3 

 

Table 2 shows the Friedman ranking test for 

SDM. The Friedman rank test is a non-parametric 

statistical test that compares differences between two 

or more dependent groups [52]. Table 2 shows that 

the IGWO algorithm is clearly better than other 

algorithms regarding convergence ability and 

accuracy, with IGWO securing first rank, followed by 

GWO, WOA, SCA, and MVO. 

 

4.2. Case 2: Double Diode 

 

Figure 6 shows the convergence graph of the 

techniques used to extract the DDM parameters. It 

also shows that the IGWO algorithm has a fast 

convergence. The IGWO achieves the best value, 

0.041569, in the 12𝑡ℎ iteration. The second best is 

GWO with the 21𝑡ℎ iteration. These results are 

logical because the IGWO is an improved variant of 

the GWO method and has the advantage of high 

convergence speed over the original algorithm. The 

SCA and MVO achieve the best value on 125𝑡ℎ and 

87𝑡ℎ iterations. Figure 6 demonstrates that the WOA 

is the worst convergence method for this problem 

with the 219𝑡ℎ iteration. 
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Figure 6. The convergence graph for DDM. 

 

According to the computation time outputs, 

the situation for the DDM is really interesting, like a 

single-diode model. Figure 7 compares the 

calculation time results for the DDM. Although the 

convergence trend in Figure 6 indicates that the 

IGWO is the best convergence method, the time 

outputs of Figure 7 state that The IGWO is the slowest 

method, with 2.7615 seconds. 

 

 
Figure 7. The computation time for DDM. 

 

According to the computation time outputs, 

the situation for the DDM is really interesting, like a 

single-diode model. Figure 7 compares the 

calculation time results for the DDM. Although the 

convergence trend in Figure 6 indicates that the 

IGWO is the best convergence method, the time 

outputs of Figure 7 state that The IGWO is the slowest 

method, with 2.7615 seconds. 

 

 
Figure 8. The I-V Polarization curve for DDM. 

 

Figure 8 demonstrates the polarization plot of 

the DDM that emphasizes the success of the IGWO. 

The blue colored curve is the curve of the experiment 

data gathering from [49]. The red circle represents the 

IGWO results. As seen in Figure 7, there is a precise 

match on the I-V graph between calculated output and 

measurement results. 

 

 
Table 3. The unknown parameter results in the double diode. 

Parameters GWO IGWO MVO SCA WOA 

𝑅𝑠ℎ 1.237112 1.237378 1.237186 1.255711 1.237312 

𝑅𝑠 0.111071 0.002382 0.238979 0.00001 0.422831 

𝛼1 1.212469 1.995611 1.996953 1.676885 1.77301 

𝛼2 1.200126 1.992697 1.887299 1.984556 1.111419 

𝐼01 0.122898 0.093894 0.700794 0.00001 0.024884 

𝐼02 0.000523 0.008832 0.640783 0.62012 0.14825 

𝐼𝑝ℎ 0.874122 0.830082 0.92585 0.826977 0.99999 

 
Table 4. Friedman ranking test results for DDM. 

Algorithms GWO IGWO MVO SCA WOA 

Friedman Rankings 2 1 3 4 5 

 

For validation, the comparison between the 

unknown parameters obtained from methods for the 

double diode case has been presented for more 

validation. Table 3 shows the output of all methods 

used to extract the PV parameters for a DDM. 

The Friedman ranking test for DDM is given 

Table 4. According to the ranking results on Table 4, 

the IGWO algorithm performs better than other 

methods regarding convergence ability and accuracy, 



S. Kul, S. A. Celtek / BEU Fen Bilimleri Dergisi 12 (4), 1041-1053, 2023 

1050 
 

with IGWO securing first rank, followed by GWO, 

MVO, MVO, and WOA. 

 

4.3. An Overview of The Results 

 

The SDM and DDM results show that different 

optimization algorithms have unique advantages and 

limitations for this application. IGWO offers rapid 

convergence for both SDM and DDM. The fast 

convergence ability of IGWO maybe because this 

algorithm is an improved version of GWO. As an 

improved algorithm, IGWO can explore the search 

space more effectively. Although IGWO offers fast 

convergence for both SDM and DDM, it is the slowest 

in computation time. IGWO tends to approach the 

best result by doing more detailed research. 

On the other hand, the fact that GWO has 

good performance for both SDM and DDM shows 

that this algorithm's basic features and structure are 

quite suitable for the nature of the PV parameter 

extraction problem. SCA and MVO may offer better 

results in DDM than SDM because the convergence 

process of these algorithms may be more conducive 

to investigating different combinations of parameters 

in a more complex model. The fact that WOA 

performs lower than other methods may suggest that 

the algorithm does not have an optimal search and 

convergence process for this particular problem set. 

 

5. Conclusion and Discussion 

 

In this paper, five different meta-heuristic 

optimization techniques have been implemented to 

extract PV module design parameters. These methods 

include GWO, IGWO, MVO, WOA), and SCA. 

These algorithms have been implemented in the SDM 

case and the DDM case. An error function has been 

used to calculate the difference between the computed 

and measured current values. Different from the 

literature, the unknown parameter estimation is not 

just considered an offline optimization problem but 

also a real-time optimization problem in which the 

calculation time matters. Thus, the computation times 

for each method used in this paper are calculated. The 

inferences obtained from the study can be listed as 

follows; 

1) The IGWO, GWO, SCA, MVO, and WOA 

algorithms can successfully extract PV module 

design parameters. The fitness function results can 

be given as proof of this inference. 

2) For offline optimization, the IGWO is more 

successful than the other system in both cases, 

SDM and DDM. The convergence trends in 

Figure 3 and Figure 6 can be proven. In SDM, 

IGWO reaches 0.0416 in the 15𝑡ℎ iteration, and in 

DDM, it comes to 0.041569 in the 12𝑡ℎ iteration, 

supporting this claim. 

3) The unknown PV parameters extraction problem 

is an offline optimization issue. However, if we 

want a real solution for the solar PV industry, it 

needs to be real-time optimization solved quickly. 

The computed time results are really interesting. 

The IGWO, the most successful method, is also 

the slowest among the five methods. The GWO, 

SCA, and WOA methods are more usable for real-

time application. Figure 4 and Figure 7 can be 

given as proof. 

4) The IGWO is used for the five unknown SDM 

parameter estimation and the seven unknown 

DDM parameter estimation issues for the first time 

in the literature. This study provided the first 

literature contribution in this field, with IGWO's 

successful results of 0.0416 for SDM and 

0.041569 for DDM. The success of IGWO for 

these problems has been shown with this study for 

the first time. 

 

The limitation of this paper is that this study 

was conducted only on a specific set of PV module 

design parameters. This study assumes that the 

mathematical modeling used fully reflected PV 

module structures. For future work, we will try the 

solve optimum parameters for the three-diode / four-

diode model. Also, we will run this problem with 

other heuristic based optimization methods. 
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