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ABSTRACT 
 

In this study, numerical solutions to time-fractional coupled Burgers equations are obtained utilizing the q-homotopy Shehu 

analysis transform method. The definition of fractional derivatives in the sense of Caputo. q-homotopy Shehu analysis 

transform method is also used to find the numerical solutions of the time-fractional coupled Burgers equations. In addition, the 

MAPLE software is utilized to plot the graphs of the solutions. These results demonstrate that the presented method is accurate 

and simple to implement. 
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1. INTRODUCTION 

 

Fractional differential equations (FDEs) have recently gained popularity in numerous scientific areas. 

[1-6]. The fractional technique is commonly utilized to simulate a variety of difficulties, and it is widely 

applied to numerous problems in mechanics, anomalous diffusion, wave propagation, and turbulence, 

among others [7-9]. Thus, numerous scientists research fractional calculus extensively and work to 

enhance it. One of the greatest benefits of utilizing FDEs with non-local properties is that they display 

novel properties for several difficulties. Nonlinear FDEs are challenging to solve for a variety of reasons. 

Because the majority of FDEs isn’t be solved analytically, efficient and potent numerical approaches 

are devised. But the numbers of the approaches are fairly limited.  

 

However, the fractional order varies based on time and space. The scenario leads to a rapidly expanding 

field of FPDEs with fractional operators of variable order [10-19]. Several potent numerical approaches 

were established in the scientific literature, and numerous eminent scholars contributed to this topic. 

Several of these techniques include the adomian decomposition method (ADM) [20], homotopy 

perturbation method (HPM) [21-23], homotopy analysis method (HAM) [24-25], the collocation method 

[26-31], the Sumudu transform method (STM) [32-33], the differential transform method (DTM) [34-

38].  

 

For analyzing differential equations in the time domain, the Shehu transform, a generalization of the 

Laplace and Sumudu integral transforms, is introduced [39]. Iterative Shehu transform method (ISTM) 

is developed, which leverages the Shehu transform (ST) approach and decomposes the nonlinearity 

component to create a simple and effective solution for solving FPDEs [40].  A two-dimensional version 

of the one-dimensional Shehu transform is developed [41]. The fuzzy Shehu transform technique 

(FSTM) is presented by employing Zadeh's decomposition theorem and fuzzy Riemann integral of real-

valued functions on finite intervals [42]. Using the natural transform decomposition technique and the 

iterative Shehu transform method with a singular kernel derivative, the time-fractional Klein-Gordon 
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equation was studied [43]. To solve time-fractional gas dynamics equations, the variational iteration 

transform method is combined with ST and VIM [44]. By using the established q-Shehu transform, the 

solutions of the q-fractional kinetic equations are found in terms of the constructed generalized hyper-

Bessel function [45]. The notion of ST in q-calculus, q-Shehu transform, is introduced along with its 

features [46]. 

 

The time-fractional coupled Burgers equation is [47] 

 

{
 
 

 
 

𝜕𝛼𝑢

𝜕𝜏𝛼
+ 𝑢

𝜕𝑢

𝜕𝜁
+ 𝑤

𝜕𝑢

𝜕𝜇
=
1

𝑅𝑒
[
𝜕𝛼𝑢

𝜕𝜁𝛼
+
𝜕𝛼𝑢

𝜕𝜇𝛼
] ,

𝜕𝛽𝑤

𝜕𝜏𝛽
+ 𝑢

𝜕𝑤

𝜕𝜁
+ 𝑤

𝜕𝑤

𝜕𝜇
=
1

𝑅𝑒
[
𝜕𝛽𝑤

𝜕𝜁𝛽
+
𝜕𝛽𝑤

𝜕𝜇𝛽
] , 0 < 𝜁, 𝜇 < 1, 0 < 𝛼, 𝛽 < 1, 𝜏 > 0.

 (1) 

 

The Burgers model of turbulence is an extremely influential fluid dynamics model. Various scientists 

have contemplated examining the theory and model of shock waves in order to get theoretical knowledge 

of a physical flow class and to assess various approximation approaches. Eq. (1) has the advantage over 

competing numerical formulations of viscous diffusion and nonlinear advection in that it is the simplest. 

It illustrates the fundamental forms of the dissipation term 𝑤
𝜕𝑢

𝜕𝜇
 and the nonlinear advection term 𝑢

𝜕𝑢

𝜕𝜁
, 

where 𝑅𝑒 is the Reynolds number that is used to model the naturally occurring phenomena of wave 

motions and hence determine the behavior of the solution. Cole [48] examined the mathematical 

characteristics of Equation (1). In physics and applied mathematics, nonlinear phenomena play a 

significant role. The significance of getting actual or estimated outcomes of PDEs in science in terms of 

exploring new strategies; this is still a popular topic [49–52]. Utilizing nonlinear PDEs, a variety of 

strategies for obtaining the real results of the numerous physical models presented have been proposed. 

Bateman [53] created a notable model and identified its consistent results, that are illustrative of 

numerous viscous flows. Later, Burgers [48] proposed it as one of the class models describing 

mathematical turbulence problems. It was described by Hopf [54] in gas dynamics. In addition, they 

demonstrated separately that the Burgers equation may be solved for any initial condition. Numerical 

solutions for the one-dimensional Burgers equation was investigated  [55]. Nonlinear convection and 

the viscosity terms unquestionably chasten the Navier–Stokes equation [56-57]. 

 

This article aims to introduce a new method, the q-homotopy Shehu analysis transform method, and to 

use it to get new numerical solutions for coupled Burgers equations. 

 

The remainder of the study is detailed below. In Section 2, fundamental fractional derivative definitions 

and the Shehu transform of fractional derivatives are provided. In Section 3, q-homotopy Shehu analysis 

transform method is provided. In Section 4, the numerical solutions of the time-fractional coupled 

Burgers equations are presented. Section 5 introduces the conclusion. 

 

2. PRELIMINARIES 

 

Several fundamental definitions are provided in the part. 

 

Definition 1 [4, 58-59]. The Riemann-Liouville fractional integral is described as 

 

𝐼𝑎𝑓(𝑥) =

{
 

 1

Г(𝑎)
∫(𝑥 − 𝑡)𝑎−1𝑓(𝑡)𝑑𝑡

𝑥

0

,   𝑎 > 0, 𝑥 > 0,

𝐼0𝑓(𝑥) = 𝑓(𝑥), 𝑎 = 0.

 (2) 

 

Definition 2 [4, 58-59]. The Caputo fractional derivative (CFD)  is given by  



Bektaş and Anaç / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 24 (3) – 2023 
 

179 

𝐷𝑎𝑓(𝑥) = 𝐼𝑎−𝑛𝐷𝑛𝑓(𝑥) =
1

Г(𝑛 − 𝑎)
∫(𝑥 − 𝑡)𝑛−𝑎−1𝑓(𝑛)(𝑡)𝑑𝑡

𝑥

0

, (3) 

 
where 𝑛 − 1 < 𝑎 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑥 > 0, 𝑓 ∈ 𝐶−1

𝑛 . 
 

Definition 3 [12]. The Mittag-Leffler function  𝑬𝒂 is defined as  

 

𝐸𝑎(𝑧) = ∑
𝑧𝑎

Г(𝑛𝑎 + 1)

∞

𝑛=0

, 𝑎 > 0. (4) 

 

Definition 4 [39]. The Shehu transform (ST) of the function 𝑓(𝑡) is given by  

 

S[𝑓(𝑡)] = 𝑉[𝑠, 𝑢] = ∫ 𝑓(𝑡)𝑒−
𝑠𝑡

𝑢𝑑𝑡
∞

0
, 𝑠 > 0, 𝑢 > 0.  (5) 

 

Definition 5  [39]. If V(𝑠, 𝑢) is the ST of the function 𝑓(𝑡), then ST of CFD is defined by  

 

S[𝐷𝛼𝑓(𝑡)] = (
s

u
)
𝛼

V(𝑠, 𝑢) −∑(
s

u
)
𝛼−𝑘−1

𝑓(𝑘)(0), 𝑛 − 1 < 𝛼 ≤ 𝑛.     

𝑛−1

𝑘=0

 (6) 

 

3. THE METHODOLOGY OF q-HOMOTOPY SHEHU ANALYSIS TRANSFORM METHOD 

 

In this part, q-HSATM for nonlinear FPDEs is presented. In order to illustrate the technique for the 

suggested method, the nonlinear FPDEs are written in standard operator form 

 

𝐷𝑡
𝑎𝑢(𝑥, 𝑡) + 𝐴𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛, (7) 

 

with the initial condition 

 

𝑢(𝑥, 0) = ℎ(𝑥), (8) 

 

where 𝐴 is a linear operator, 𝑁 is a nonlinear operator, 𝑔(𝑥, 𝑡) is a source term and 𝐷𝑡
𝑎 is a time-fractional 

derivative operator of order 𝛼. 
 

Now, by performing Shehu transform on Eq. (7) and using the initial condition, it is acquired as  

 

𝑆[𝑢(𝑥, 𝑡)]−∑(
s

u
)
−𝑘−1 𝜕𝑘𝑢(𝑥, 𝑡)

𝜕𝑡𝑘
|𝑡=0 

𝑛−1

𝑘=0

+ (
𝑢

𝑠
)
𝛼

𝑆[𝐴𝑢(𝑥, 𝑡)+𝑁𝑢(𝑥, 𝑡) (9) 

−𝑔(𝑥, 𝑡)] = 0. (10) 

  

 

The nonlinear operator by the assist of HAM for real function 𝜑(𝑥, 𝑡; 𝑞) is defined as  

 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = 𝑆[𝜑(𝑥, 𝑡; 𝑞) ] −
𝑢

𝑠
𝜑(𝑥, 𝑡; 𝑞) (0+) + (

𝑢

𝑠
)
𝛼

{𝑆[𝐴𝑢(𝑥, 𝑡)+𝑁𝑢(𝑥, 𝑡) (11) 

−𝑔(𝑥, 𝑡)]}, (12) 
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where 𝑞𝜖 [0,
1

𝑛
]. 

It is established a homotopy as follows 

 

(1 − 𝑛𝑞)𝑆 [𝜑(𝑥, 𝑡; 𝑞) −
𝑢

𝑠
𝜑(𝑥, 𝑡; 𝑞) (0+)] = ℎ𝑞𝐻(𝑥, 𝑡)𝑁[𝜑(𝑥, 𝑡; 𝑞)], (13) 

 

where, ℎ ≠ 0 is an auxiliary parameter and 𝑆 represents Shehu transform. For 𝑞 = 0 and 𝑞 =
1

𝑛
, 

the results in Eq. (13) are respectively provided: 

 

𝜑(𝑥, 𝑡; 0) = 𝑢0(𝑥, 𝑡), 𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝑢(𝑥, 𝑡),  (14) 

  

Therefore, by amplifying 𝑞 from 0 to 
1

𝑛
, then the solution 𝜑(𝑥, 𝑡; 𝑞) converges from 𝑢0(𝑥, 𝑡) to 

the solution 𝑢(𝑥, 𝑡). Employing the Taylor theorem around 𝑞 and expanding 𝜑(𝑥, 𝑡; 𝑞) and then, 

it is obtained as 
 

𝜑(𝑥, 𝑡; 𝑞) = 𝑢0(𝑥, 𝑡) +∑𝑢𝑚(𝑥, 𝑡)𝑞
𝑚

∞

𝑖=1

, (15) 

  

where  

𝑢𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0. (16) 

 

Eq. (15) converges at 𝑞 =
1

𝑛
  for the appropriate 𝑢0(𝑥, 𝑡), 𝑛 and ℎ. Then, we have one of the 

solutions of the original nonlinear equation of the form 

 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (17) 

 

If we differentiate the zeroth order deformation Eq. (13) 𝑚 −times with respect to 𝑞 and we 

divide by 𝑚!, respectively, then for 𝑞 = 0, it is obtained as 

 
𝑆[𝑢𝑚(𝑥, 𝑡)− 𝑘𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎ𝐻(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1), (18) 

 

where the vectors are defined by 

 

�⃗� 𝑚 = {𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), … , 𝑢𝑚(𝑥, 𝑡)}. (19) 

 

When the inverse Shehu transform to Eq. (18) is applied, then it is obtained as  

 

𝑢𝑚(𝑥, 𝑡) = 𝑘𝑚𝑢𝑚−1(𝑥, 𝑡) + ℎS
−1[𝐻(𝑥, 𝑡)ℛ𝑚(�⃗� 𝑚−1)], (20) 

 

where 
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ℛ𝑚(�⃗� 𝑚−1) = S[𝑢𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚
𝑛
)
u

𝑠
𝑢0(𝑥, 𝑡), (21) 

+(
𝑢

𝑠
)
𝛼

S(𝐴𝑢𝑚−1(𝑥, 𝑡) + 𝐻𝑚−1(𝑥, 𝑡) − g(𝑥, 𝑡)), (22) 

 

and  

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1.

             (23) 

 

Here, 𝐻𝑚 is homotopy polynomial and presented as 

 

𝐻𝑚−1 =
1

(𝑚 − 1)!

𝜕𝑚−1𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚−1
|𝑞=0, (24) 

 

and  

 

𝜑(𝑥, 𝑡; 𝑞) = 𝜑0 + 𝑞𝜑1 + 𝑞
2𝜑2 +⋯ (25) 

 

By using Eqs. (20-22), it is obtained 

 

𝑢𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑢𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚
𝑛
)
u

𝑠
𝑢0(𝑥, 𝑡) (26) 

+ℎS−1 [((
𝑢

𝑠
)
𝛼

S(𝐴𝑢𝑚−1(𝑥, 𝑡) + 𝐻𝑚−1(𝑥, 𝑡) − g(𝑥, 𝑡)))]. (27) 

 

By utilizing q-HSATM, the series solution is defined by 

 

𝑢(𝑥, 𝑡) =∑𝑢𝑚(𝑥, 𝑡)

∞

𝑖=0

. (28) 

 

3.1. Convergence Analysis of q-HSATM Solutions 

 

Theorem 1 (Uniqueness theorem) [60] The solution for  the Eq. (7) obtained by q-HSATM is unique 

for every 𝛄 ∈ (𝟎, 𝟏), where 𝜸 = (𝒏 + 𝒉) + 𝒉(𝝐 + 𝜶)𝑻.    
 

 

Theorem 2 (Convergence theorem) [60] Let 𝐗 be a Banach space and 𝑭:𝑿 → 𝑿 be a nonlinear 

mapping. Assume that  

 

 ‖𝑮(𝒂) − 𝑮(𝒉)‖ ≤ 𝛄‖𝒂 − 𝒉‖, ∀𝒂, 𝒃 ∈ 𝑿, (29) 

  

then 𝐆 has a fixed point in view of Banach fixed point theory [61]. Moreover, for the arbitrary selection 

of 𝒂𝟎, 𝒃𝟎 ∈ 𝑿, the sequence generated by the q-HSATM converges to fixed point of 𝑮 and  

 

 ‖𝒘𝒎 −𝒘𝒏‖ ≤
𝜸𝒏

𝟏−𝜸
‖𝒘𝟏 −𝒘𝟎‖, ∀𝒂, 𝒃 ∈ 𝑿. (30) 
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4. THE NUMERICAL SOLUTIONS OF THE TIME-FRACTIONAL COUPLED BURGERS 

EQUATIONS  

 

Let us consider the nonlinear time-fractional coupled Burgers equations (TFCBEs) [47] 

 

{
 
 

 
 

𝝏𝜶𝒖

𝝏𝝉𝜶
+ 𝒖

𝝏𝒖

𝝏𝜻
+ 𝒘

𝝏𝒖

𝝏𝝁
=
𝟏

𝑹𝒆
[
𝝏𝟐𝒖

𝝏𝜻𝟐
+
𝝏𝟐𝒖

𝝏𝝁𝟐
] ,

𝝏𝜷𝒘

𝝏𝝉𝜷
+ 𝒖

𝝏𝒘

𝝏𝜻
+ 𝒘

𝝏𝒘

𝝏𝝁
=
𝟏

𝑹𝒆
[
𝝏𝟐𝒘

𝝏𝜻𝟐
+
𝝏𝟐𝒘

𝝏𝝁𝟐
] , 𝟎 < 𝜻, 𝝁 < 𝟏, 𝟎 < 𝜶,𝜷 < 𝟏, 𝝉 > 𝟎.

 (31) 

 

 

with initial conditions 

 

u(𝜁, 𝜇, 0) =
3

4
−

1

4(1 + exp((Re/32)(−4𝜁 + 4𝜇)))
, (32) 

w(𝜁, 𝜇, 0) =
3

4
+

1

4(1 + exp((Re/32)(−4𝜁 + 4𝜇)))
, (33) 

 

 

where, Re is Reynolds number. 

Now, by applying Shehu transform to Eq. (31) and by using Eqs. (32)-(33), then it is obtained as 

 

 

S[u(𝜁, 𝜇, 𝜏)] −
𝑢

𝑠
u(𝜁, 𝜇, 0)+ (

𝑢

𝑠
)
𝛼

S [𝑢
𝜕𝑢

𝜕𝜁
+ 𝑤

𝜕𝑢

𝜕𝜇
−
1

𝑅𝑒
[
𝜕2𝑢

𝜕𝜁2
+
𝜕2𝑢

𝜕𝜇2
]] = 0,  (34) 

S[w(𝜁, 𝜇, 𝜏)] −
𝑢

𝑠
w(𝜁, 𝜇, 0)+ (

𝑢

𝑠
)
𝛼

S [𝑢
𝜕𝑤

𝜕𝜁
+ 𝑤

𝜕𝑤

𝜕𝜇
−
1

𝑅𝑒
[
𝜕2𝑤

𝜕𝜁2
+
𝜕2𝑤

𝜕𝜇2
]] = 0,  (35) 

 

The nonlinear operators by using Eqs. (34)-(35)  are defined as 

 

 

 𝑵𝟏[𝝋(𝜻, 𝝁, 𝝉; 𝒒),𝝍(𝜻, 𝝁, 𝝉; 𝒒) ] = 𝑺[𝝋(𝜻, 𝝁, 𝝉; 𝒒) ] −
𝒖

𝒔
𝐮(𝜻, 𝝁, 𝟎) + (

𝒖

𝒔
)
𝜶

  

 × {𝑺 [𝝋(𝜻, 𝝁, 𝝉; 𝒒)
𝝏𝝋(𝜻,𝝁,𝝉;𝒒)

𝝏𝜻
+𝝍(𝜻, 𝝁, 𝝉; 𝒒)

𝝏𝝋(𝜻,𝝁,𝝉;𝒒)

𝝏𝝁
−

𝟏

𝑹𝒆
[
𝝏𝟐𝝋(𝜻,𝝁,𝝉;𝒒)

𝝏𝜻𝟐
  

 +
𝝏𝟐𝝋(𝜻,𝝁,𝝉;𝒒)

𝝏𝝁𝟐
]}, (36) 

 𝑵𝟐[𝝋(𝜻, 𝝁, 𝝉; 𝒒),𝝍(𝜻, 𝝁, 𝝉; 𝒒) ] = 𝑺[𝝍(𝜻, 𝝁, 𝝉; 𝒒) ] −
𝒖

𝒔
𝐰(𝜻, 𝝁, 𝟎) + (

𝒖

𝒔
)
𝜶

  

 × {𝑺 [𝝋(𝜻, 𝝁, 𝝉; 𝒒)
𝝏𝝍(𝜻,𝝁,𝝉;𝒒)

𝝏𝜻
+𝝍(𝜻, 𝝁, 𝝉; 𝒒)

𝝏𝝍(𝜻,𝝁,𝝉;𝒒)

𝝏𝝁
−

𝟏

𝑹𝒆
[
𝝏𝟐𝝍(𝜻,𝝁,𝝉;𝒒)

𝝏𝜻𝟐
  

 +
𝝏𝟐𝝍(𝜻,𝝁,𝝉;𝒒)

𝝏𝝁𝟐
]}. (37) 

 
By applying the proposed algorithm, the 𝑚− 𝑡ℎ order deformation equation is defined by  

 

 

S[𝑢𝑚(𝜁, 𝜇, 𝜏) − 𝑘𝑚𝑢𝑚−1(𝜁, 𝜇, 𝜏)] = ℎℛ1,𝑚(�⃗� 𝑚−1),  (38) 

S[𝑤𝑚(𝜁, 𝜇, 𝜏) − 𝑘𝑚𝑤𝑚−1(𝜁, 𝜇, 𝜏)] = ℎℛ2,𝑚(�⃗⃗� 𝑚−1).  (39) 
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where 

 𝓡𝟏,𝒎(�⃗⃗� 𝒎−𝟏) = 𝑺[�⃗⃗� 𝒎−𝟏(𝜻, 𝝁, 𝝉) ] −
𝒖

𝒔
𝐮(𝜻, 𝝁, 𝟎) + (

𝒖

𝒔
)
𝜶

  

 × {𝑺 [∑ 𝒖𝒓
𝝏𝒖𝒎−𝟏−𝒓

𝝏𝜻
𝒎−𝟏
𝒓=𝟎 + ∑ 𝒘𝒓

𝝏𝒖𝒎−𝟏−𝒓
𝝏𝝁

𝒎−𝟏
𝒓=𝟎 −

𝟏

𝑹𝒆
[
𝝏𝟐𝒖𝒎−𝟏
𝝏𝜻𝟐

+
𝝏𝟐𝒖𝒎−𝟏
𝝏𝝁𝟐

]}, (40) 

 𝓡𝟐,𝒎(�⃗⃗⃗� 𝒎−𝟏) = 𝑺[�⃗⃗⃗� 𝒎−𝟏(𝜻, 𝝁, 𝝉) ] −
𝒖

𝒔
𝐰(𝜻, 𝝁, 𝟎) + (

𝒖

𝒔
)
𝜶

  

 × {𝑺 [∑ 𝒖𝒓
𝝏𝒘𝒎−𝟏−𝒓

𝝏𝜻
𝒎−𝟏
𝒓=𝟎 + ∑ 𝒘𝒓

𝝏𝒘𝒎−𝟏−𝒓
𝝏𝝁

𝒎−𝟏
𝒓=𝟎 −

𝟏

𝑹𝒆
[
𝝏𝟐𝒘𝒎−𝟏
𝝏𝜻𝟐

+
𝝏𝟐𝒘𝒎−𝟏
𝝏𝝁𝟐

]}. (41) 

 
On applying inverse Shehu transform to Eqs. (38)-(39), then we have  
 

 
By the use of initial conditions, then it is obtained as 

 

 
To find the values of 𝑢1(𝜁, 𝜇, 𝜏) and 𝑤1(𝜁, 𝜇, 𝜏), putting 𝑚 = 1 in Eqs. (42)-(43), then it is obtained as  

 
 

 
Similarly, to find values of 𝑢2(𝜁, 𝜇, 𝜏) and 𝑤2(𝜁, 𝜇, 𝜏), putting 𝑚 = 2 in Eqs. (42)-(43), then it is found 

as  

 

𝑢𝑚(𝜁, 𝜇, 𝜏) = 𝑘𝑚𝑢𝑚−1(𝜁, 𝜇, 𝜏) + ℎ𝑆
−1[ℛ1,𝑚(�⃗� 𝑚−1)],  (42) 

𝑤𝑚(𝜁, 𝜇, 𝜏) = 𝑘𝑚𝑤𝑚−1(𝜁, 𝜇, 𝜏) + ℎ𝑆
−1[ℛ2,𝑚(�⃗⃗� 𝑚−1)].  (43) 

𝑢0(𝜁, 𝜇, 𝜏) =
3

4
−

1

4(1 + exp((Re/32)(−4𝜁 + 4𝜇)))
,  (44) 

𝑤0(𝜁, 𝜇, 𝜏) =
3

4
+

1

4(1 + exp((Re/32)(−4𝜁 + 4𝜇)))
.  (45) 

𝑢1(𝜁, 𝜇, 𝜏) = hRe
exp(−Re(𝜁 − 𝜇)/8)𝑡𝛼

128(1 + exp(−Re(𝜁 − 𝜇)/8))2Γ(α + 1)
,  (46) 

𝑤1(𝜁, 𝜇, 𝜏) = −hRe
exp(−Re(𝜁 − 𝜇)/8)𝑡𝛽

128(1 + exp(−Re(𝜁 − 𝜇)/8))2Γ(β + 1)
.  (47) 

𝑢2(𝜁, 𝜇, 𝜏) = (n + h)hRe
exp(−Re(𝜁 − 𝜇)/8)𝑡𝛼

128(1 + exp(−Re(𝜁 − 𝜇)/8))2Γ(α + 1)
,   

−h2Re2
exp(−Re(𝜁 − 𝜇)/8)

4096(1 + exp(−Re(𝜁 − 𝜇)/8))4Γ(α + 1)Γ(β + 1)
   

× [(
−Γ(α + 1)Γ(β + 1)𝑡2𝛼

Γ(2α + 1)
+
Γ(α + 1)Γ(β + 1)𝑡𝛼+𝛽

Γ(α + β + 1)
) exp(−Re(𝜁 − 𝜇)/8)      

+
Γ(α + 1)Γ(β + 1)(exp(−Re(𝜁 − 𝜇)/4) − 1)𝑡2𝛼

Γ(2α + 1)
.  (48) 

𝑤2(𝜁, 𝜇, 𝜏) = −(n + h)hRe
exp(−Re(𝜁 − 𝜇)/8)𝑡𝛽

128(1 + exp(−Re(𝜁 − 𝜇)/8))2Γ(β + 1)
,   

+h2(Re)2
exp(−Re(𝜁 − 𝜇)/8)

4096(1 + exp(−Re(𝜁 − 𝜇)/8))4Γ(α + 1)Γ(β + 1)
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In this way, the other terms can be obtained. Thus, the q-HSATM solution of Eq. (31) is given by 
 

Substituting the values of 𝛼 = 1, 𝛽 = 1, 𝑛 = 1, ℎ = −1 in Eqs. (50)-(51), then the obtained results 

∑ 𝑢𝑚(𝜁, 𝜇, 𝜏) (
1

𝑛
)
𝑚

𝑀
𝑚=1 and ∑ 𝑤𝑚(𝜁, 𝜇, 𝜏) (

1

𝑛
)
𝑚

𝑀
𝑚=1  converge to the analytical solutions u(𝜁, 𝜇, 𝜏) =

3

4
−

1

4(1+exp((Re/32)(−4𝜁+4𝜇−𝜏)))
 and w(𝜁, 𝜇, 𝜏) =

3

4
+

1

4(1+exp((Re/32)(−4𝜁+4𝜇−𝜏)))
 of TFCBEs when 𝑀 → ∞.  

 
Figure 1 shows 3D graphs for the u(𝜁, 𝜇, 𝜏) solution of q-HSATM, the exact solution, and the absolute 

error for 𝛼 = 1, 𝛽 = 1.  
 

 
     (a)                                                 (b) 

 
                                                                                (c) 

Figure 1. (a) u(𝜁, 𝜇, 𝜏) solution of q-HSATM (b) Exact solution of u(𝜁, 𝜇, 𝜏)   (c) Nature of absolute 

error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑞−𝐻𝑆𝐴𝑇𝑀| at 𝑅𝑒 = 100, h = −1, n = 1, 𝜏 = 0.5, 𝛼 = 1, 𝛽 = 1.   

 

× [(
−Γ(α + 1)Γ(β + 1)𝑡2β

Γ(2β + 1)
+
Γ(α + 1)Γ(β + 1)𝑡𝛼+𝛽

Γ(α + β + 1)
) exp(−Re(𝜁 − 𝜇)/8)      

+
Γ(α + 1)Γ(β + 1)(exp(−Re(𝜁 − 𝜇)/4) − 1)𝑡2β

Γ(2β + 1)
.  (49) 

u(𝜁, 𝜇, 𝜏) = 𝑢0(𝜁, 𝜇, 𝜏) + ∑ 𝑢𝑚(𝜁, 𝜇, 𝜏) (
1

𝑛
)
𝑚∞

𝑚=1

,  (50) 

w(𝜁, 𝜇, 𝜏) = 𝑤0(𝜁, 𝜇, 𝜏) + ∑ 𝑤𝑚(𝜁, 𝜇, 𝜏) (
1

𝑛
)
𝑚∞

𝑚=1

.  (51) 
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Figure 2 shows 3D graphs for the w(𝜁, 𝜇, 𝜏) solution of q-HSATM, the exact solution, and the absolute 

error for 𝛼 = 1, 𝛽 = 1.  
 

  

                                                     (a)                                                                 (b)  

 
(c) 

 

Figure 2. (a) w(𝜁, 𝜇, 𝜏) solution of q-HSATM (b) Exact solution of w(𝜁, 𝜇, 𝜏)(c) Nature of absolute 

error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝑞−𝐻𝑆𝐴𝑇𝑀| at 𝑅𝑒 = 100, h = −1, n = 1, 𝜏 = 0.5, 𝛼 = 1, 𝛽 = 1.   
 

The 2D graphs for q-HSATM solution by varying  α and β values are depicted in Figure 3.   
 

 
 

Figure 3. (a) u(𝜁, 𝜇, 𝜏) solution of q-HSATM with respect to t when Re = 100, x = 0.5, y = 1 with distinct α and 

β. (b) w(𝜁, 𝜇, 𝜏) solution of q-HSATM with respect to t when Re = 100, x = 0.5, y = 1 with distinct α 

and β. 
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q-HSATM is observed to be more efficient than FNTDM for u(𝜁, 𝜇, 𝜏) numerical solution Table 1. 

Table 1. Comparative study between FNTDM [47] and q-HSATM for the numierical solutions u(𝜁, 𝜇, 𝜏) at  Re =
100, y = 1, α = 1 and β = 1. 

 
𝜁 𝜏 |𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐹𝑁𝑇𝐷𝑀| |𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑞−𝐻𝑆𝐴𝑇𝑀| 

0.1 0.1 8.4 × 10−5 1.7 × 10−8 
 0.2 8.2 × 10−5 1.5 × 10−7 
 0.3 7.8 × 10−5 5.7 × 10−7 
 0.4 7.4 × 10−5 1.4 × 10−6 
 0.5 6.9 × 10−5 3.2 × 10−6 

0.2 0.1 9.9 × 10−4 6.2 × 10−8 
 0.2 9.9 × 10−4 5.4 × 10−7 
 0.3 9.7 × 10−4 2.0 × 10−6 
 0.4 9.6 × 10−4 5.2 × 10−6 
 0.5 9.4 × 10−4 1.1 × 10−5 

0.3 0.1 1.1 × 10−2 2.1 × 10−7 
 0.2 1.1 × 10−2 1.8 × 10−6 
 0.3 1.1 × 10−2 6.9 × 10−6 
 0.4 1.1 × 10−2 1.8 × 10−5 
 0.5 1.1 × 10−2 3.9 × 10−5 

0.4 0.1 1.3 × 10−1 7.5 × 10−7 
 0.2 1.3 × 10−1 6.5 × 10−6 
 0.3 1.3 × 10−1 2.4 × 10−5 
 0.4 1.3 × 10−1 6.3 × 10−5 
 0.5 1.3 × 10−1 1.3 × 10−4 

0.5 0.1 1.5 × 10 0 2.6 × 10−6 
 0.2 1.5 × 10 0 2.2 × 10−5 
 0.3 1.5 × 10 0 8.3 × 10−5 
 0.4 1.5 × 10 0 2.1 × 10−4 
 0.5 1.5 × 10 0 4.6 × 10−4 

 

In Table 2, q-HSATM is observed to be more efficient than FNTDM for w(𝜁, 𝜇, 𝜏) numerical solution.  

 

Table 2. Comparative study between FNTDM [47] and q-HSATM for the numerical solutions w(𝜁, 𝜇, 𝜏) at  Re =
100, y = 1, α = 1 and β = 1. 

 

𝜁 𝜏 |𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐹𝑁𝑇𝐷𝑀| |𝑤𝑒𝑥𝑎𝑐𝑡 −𝑤𝑞−𝐻𝑆𝐴𝑇𝑀| 

0.1 0.1 3.4 × 10−5 1.7 × 10−8 
 0.2 1.3 × 10−5 1.5 × 10−7 
 0.3 4.2 × 10−6 5.7 × 10−7 
 0.4 2.8 × 10−6 1.4 × 10−6 
 0.5 9.9 × 10−6 3.2 × 10−6 

0.2 0.1 2.9 × 10−5 6.2 × 10−8 
 0.2 1.5 × 10−6 5.4 × 10−7 
 0.3 1.5 × 10−5 2.0 × 10−6 
 0.4 3.3 × 10−5 5.2 × 10−6 
 0.5 5.3 × 10−5 1.1 × 10−5 

0.3 0.1 9.1 × 10−6 2.1 × 10−7 
 0.2 4.1 × 10−5 1.8 × 10−6 
 0.3 8.6 × 10−5 6.9 × 10−6 
 0.4 1.3 × 10−4 1.8 × 10−5 
 0.5 2.0 × 10−4 3.9 × 10−5 

0.4 0.1 6.0 × 10−5 7.5 × 10−7 
 0.2 1.8 × 10−4 6.5 × 10−6 
 0.3 3.3 × 10−4 2.4 × 10−5 
 0.4 5.0 × 10−4 6.3 × 10−5 
 0.5 7.2 × 10−4 1.3 × 10−4 

0.5 0.1 3.0 × 10 −4 2.6 × 10−6 
 0.2 7.0 × 10 −4 2.2 × 10−5 
 0.3 1.1 × 10 −3 8.3 × 10−5 
 0.4 1.7 × 10−3 2.1 × 10−4 
 0.5 2.5 × 10 −3 4.6 × 10−4 
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5. CONCLUSION 

 

q-HSATM is used to analyze the coupled Burgers equations in this paper. In addition, MAPLE software 

was used to obtain the graphs of the numerical solutions of these equations for the various alpha and 

beta values. For coupled Burgers equations, it is observed that the general structure of surface graphs 

plotted in Maple software differs. Coupled Burgers equations for which numerical solutions have been 

quickly and successfully obtained. Therefore, it may be extrapolated that q-HSATM is overly effective 

and robust for obtaining numerical solutions for various fractional nonlinear partial differential 

equations. 
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