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Abstract: This paper presents using a parametric technique optimise and normalise approach for coreless Resonant Inductive Coupling 

Wireless Power Transfer (RIC-WPT) systems. The system under consideration is based on a compensated series-series (SS) circuit 

employing flat spiral coils. Moreover, the proposed approach aims to determine the optimal values for capacitors to achieve maximum 

efficiency during the operation of the RIC-WPT system. Three-dimensional (3D) flat spiral coils are modelled and subjected to 

parametric analysis with varying air-gaps using ANSYS-Electronics-Maxwell software with the Finite Element Method (FEM). 

Subsequently, a power electronics circuit employing a full-bridge inverter is designed using ANSYS-Simplorer software. The coils 

and the power electronics circuit are co-simulated with different parameter values. Consequently, based on the findings of the 

parametric simulation studies, the most efficient configuration for a Wireless Power Transfer (WPT) system is proposed, incorporating 

the design and standardization of power electronics components suitable for the specified operating frequency. The simulation results 

indicate that power transmission with an efficiency of approximately 74.31% is achieved when the air gap between the coils is set to 

200 mm. Moreover, the co-simulation studies, involving different parametric values in power electronics circuit parameters and 

electromagnetic modelling parameters, provide valuable insights for WPT designs. 

Keywords: Co-simulation, FEM, parametric simulation, wireless power transfer. 

Öz: Bu makale, nüvesiz Rezonant Endüktif Kuplaj Kablosuz Güç Aktarımı (RIC-WPT) sistemlerini optimize etmek ve standart hale 

getirmek için parametrik tekniklerin kullanımını sunmaktadır. Ele alınan sistem, düz spiral bobinler kullanan kompanze edilmiş bir 

seri-seri (SS) devreye dayanmaktadır. Ayrıca, önerilen yaklaşım, RIC-WPT sisteminde maksimum verim elde etmek için kapasitörler 

için en uygun değerleri belirlemeyi amaçlamaktadır. Üç boyutlu (3D) yassı spiral bobinler, Sonlu Elemanlar Metodu (SEM) ile 

ANSYS-Electronics-Maxwell yazılımı kullanılarak modellenmiş ve farklı hava aralıklarıyla parametrik analize tabi tutulmuştur. Daha 

sonra, ANSYS-Simplorer yazılımı kullanılarak tam köprü evirici kullanan bir güç elektroniği devresi tasarlanmıştır. Bobinler ve güç 

elektroniği devreleri, farklı parametre değerleri ile simüle edilmiştir. Sonuç olarak, parametrik simülasyon çalışmalarının bulgularına 

dayanarak, belirtilen çalışma frekansına uygun güç elektroniği bileşenlerinin tasarımını ve standardizasyonunu içeren bir Kablosuz 

Güç Aktarımı (WPT) sistemi için en verimli konfigürasyon önerilmiştir. Simülasyon sonuçları, bobinler arası boşluk 200 mm olarak 

ayarlandığında yaklaşık %74,31 verimle güç iletiminin elde edildiğini göstermektedir. Ayrıca, güç elektroniği devre parametrelerinde 

ve elektromanyetik modelleme parametrelerinde farklı parametrik değerleri içeren eşanlı benzetim çalışmaları, WPT tasarımları için 

değerli bilgiler sunmaktadır. 

Anahtar Kelimeler: Eş-benzetim, SEM, parametrik benzetim, kablosuz güç aktarımı. 

1. Introduction 

Wireless power transfer (WPT) systems have gained considerable attention in various domains, ranging from everyday 

devices such as toothbrushes to advanced applications like spacecraft. Resonant inductive coupling wireless power 

transfer (RIC-WPT) [1] represents a wireless power transfer technique that enables the transmission of electrical energy 

through an electromagnetic field, eliminating the need for physical connections [2–4]. This concept was initially proposed 

and patented by Nikola Tesla in the early 20th century [3, 5–7], sparking scientific interest and research in WPT systems 

over the past century.  

Masers and the maser communication system marked the initial milestones in the development of far-field Wireless Power 

Transfer (WPT) systems in 1960 [8]. Within a decade, lasers emerged as a viable solution for far-field WPT applications 

[9]. Moreover, in 1969, William C. Brown invented a microwave WPT system [10]. Despite the height constraint of 15.44 

m, Brown successfully transferred 270 W of power via microwave to a prototype aircraft [11]. Kimura et al. proposed a 

miniature opto-electric transformer for optical WPT approaches [12]. Sahai and Graham suggested a device incorporating 

a laser-diode array for optical WPT systems [13]. Ishiyama et al. explored the use of an ultrasonic air transducer for WPT 
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[14]. Approximately a century after Tesla's initial presentation, Kurs et al. introduced and conducted experiments with a 

novel Resonant Inductive Coupling Wireless Power Transfer (RIC-WPT) system. Led by Professor M. Soljačić, this 

research team achieved the transfer of 60 W of power with an efficiency of 40% over a distance exceeding 2 m between 

the transmitter and receiver [15]. Following this significant advancement, the interest in WPT has been further amplified. 

Canon et al. used only one transmitter coil for multiple loads [16]. Karakaya transferred power to the DC motor with 60% 

efficiency by WPT. He also sent the motor rotation direction information of the DC motor within this power [17].  

Canon et al. employed a single transmitter coil to power multiple loads in their study [16]. Karakaya successfully achieved 

power transfer to a DC motor with an efficiency of 60% using WPT. Additionally, he transmitted information about the 

rotational direction of the DC motor alongside the power transfer [17]. 

Over time, researchers have proposed various strategies to enhance the efficiency of WPT systems. These approaches 

encompass the utilization of auxiliary coils [4, 18–20], the development of novel mathematical models [21–25], the design 

of advanced control circuits [1, 26–29], the application of machine learning techniques [30–35], and the modification of 

geometric structures [36–43]. These endeavours have aimed to optimize the performance and effectiveness of WPT 

systems in an academic and formal context. 

In the past two decades, there has been a remarkable surge in the popularity of electric vehicles, consequently creating a 

new realm for Wireless Power Transfer (WPT) systems. This development has attracted the attention of numerous 

researchers and prominent technology companies, leading to extensive exploration and advancements in this emerging 

field [44–49]. 

This paper introduces a parametric optimization and normalization methodology for coreless Resonant Inductive 

Coupling Wireless Power Transfer (RIC-WPT) systems. The proposed system is built upon a series-series (SS) 

compensated circuit utilizing flat spiral coils, operating at a frequency of 86 kHz. The selection of this specific operating 

frequency aligns with the standard set forth by the Society of Automotive Engineers (SAE) in their SAE J2954 guidelines. 

2. Classifying of Wireless Power Transfer 

In wireless power transfer (WPT) systems, the notion of a "media" or "carrier field" arises, representing the energy form 

through which power is converted and transmitted. Based on the investigations conducted, WPT systems can be 

categorized into distinct research domains, as depicted in Figure 1, depending on the type of carrier field employed [47], 

[50, 51]. 

 

 
Figure 1. Classification of WPT systems according to carrier field [52]. 

 

Additionally, the power transfer distance serves as a crucial parameter for classifying Wireless Power Transfer (WPT) 

systems. Therefore, WPT systems can be categorized into distinct research areas, as illustrated in Figure 2 [47, 53, 54]. 
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Figure 2. Classification of WPT systems according to transferring distance [52]. 

 

Simultaneously, Wireless Power Transfer (WPT) systems can be classified based on the number of loads and sources 

they involve. Circuits with a single source and a single load are referred to as Single Input - Single Output (SISO). 

Similarly, circuits with a single source and multiple loads are categorized as Single Input - Multiple Output (SIMO). On 

the other hand, circuits with multiple sources and a single load are termed as Multiple Input - Single Output (MISO), and 

circuits with multiple sources and multiple loads fall under the classification of Multiple Input - Multiple Output (MIMO) 

[55]. Figure 3 illustrates these circuit models, where "Tx" represents the transmitter circuit, "Rx" represents the receiver 

circuit, "Rs (Ω)" denotes the source resistance, "Ct (F)" signifies the resonant capacitor of the transmitter, "Lt (H)" 

represents the transmitter coil, "Rt (Ω)" signifies the inner resistance of the transmitter coil, "Lt (H)" represents the receiver 

coil, "Rr (Ω)" signifies the inner resistance of the receiver coil, "Cr (F)" denotes the resonant capacitor of the receiver 

circuit, "RL (Ω)" represents the load, and "M (H)" stands for mutual inductance. 

 

 

 
(a) (b) 

  

(c) (d) 

Figure 3. Circuit models of WPT systems, (a) SISO circuit model, (b) SIMO circuit model, 

(c) MISO circuit model, (d) MIMO circuit model. 

 

The final parameter for categorizing WPT systems is the compensation type employed in the transmitter and receiver 

circuits. There exist four fundamental types of compensation: Serial Transmitter - Serial Receiver (SS), Serial Transmitter 

- Parallel Receiver (SP), Parallel Transmitter - Serial Receiver (PS), and Parallel Transmitter - Parallel Receiver (PP) 

compensated circuit models [21, 47]. Figure 4 illustrates these circuit models. 
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(a) (b) 

  
(c) (d) 

Figure 4. Circuit models of WPT systems, (a) SS compensated circuit, (b) SP compensated circuit, 

(c) PS compensated circuit, (d) PP compensated circuit. 

3. Modelling of the WPT Circuit 

The modelling of wireless power transfer involves an initial examination of the fundamental circuit equations. 

Subsequently, comprehensive calculations, design, and analysis of the employed WPT system have been conducted. 

The Basic Equations for WPT 

The concept behind the RIC-WPT system revolves around the utilization of capacitors and coils during the resonance 

period. During this phase, the capacitive reactance (XC) is equated to the inductive reactance (XL). The angular frequency 

(ω0) at the point of resonance can be determined using Equation 1: 
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(1) 

 

The resonant frequency (f0) is given in Eq. 2: 
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(2) 

 

Also, Figure 5 illustrates two magnetically interconnected coils and the overall system they comprise [4], [56]. The 

transfer of power occurs from inductor L1 to inductor L2 through magnetic coupling. 

 

 
Figure 5. Two coils magnetically connected by common flux 𝚽12 [4, 56] 

 

The magnetic flux, denoted as Φ12 (Wb), originates from the current I1 (A). However, the presence of the L2 coil has a 

significant impact on the overall system. As a result, the magnetic flux Φ12 (Wb) undergoes a constant change, as described 

in Eq. 3. This constant is referred to as "Mutual Inductance," with its SI unit being Henry (H), symbolized by M, as 

indicated in Eq.3 [57]. 
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Through extensive research on Wireless Power Transfer (WPT), practical methodologies have been developed to calculate 

the mutual inductance based on the specific geometric configurations employed. Equation 4 represents the mathematical 

expression utilized for determining the mutual inductance in the context of two single-winding wire coils. In this equation, 

denoted as Eq.4 [46, 52, 58–62], M0 (µH) represents the mutual inductance, while a (m) and b (m) correspond to the radii 

of the transmitter and receiver coils, respectively. Furthermore, K(c) and E(c) denote the complete elliptic integrals of the 

first and second order, respectively, with respect to the parameter c. 
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Where d (m) is the distance between transmitter and receiver coils as given in Eq.5: 
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Thus, Eq.4 provides the mutual inductance between two single-turn loops. However, for coils with multiple turns, denoted 

by N1 and N2 representing the number of turns, the mutual inductance M is given by Eq.6. 

 

0 1 2M M N N
 

(6) 

 

In WPT systems, there is another constant which is expresses the effectiveness of the magnetic coupling between the coils 

to indicate how much of the transmitted power, that is, the flux, reaches the receiver. This constant is called the coupling 

coefficient. This constant is denoted by the letter “k” [56]. K takes values between 0 and 1 and is defined as given in Eq.7: 

In Wireless Power Transfer (WPT) systems, the efficacy of the magnetic coupling between the coils, which determines 

the proportion of transmitted power (flux) received by the receiver, is quantified by a parameter known as the coupling 

coefficient. The coupling coefficient is denoted by the symbol "k" [56]. It assumes values between 0 and 1 and is 

mathematically defined as shown in Eq.7. 
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(7) 

Calculation of the WPT Coils 

Previous literature has documented various coil shapes, such as the conventional rectangular coil, rectangular double loop 

coil, hexagonal coil, and cloverleaf, in the context of wireless power transfer (WPT) systems. The geometric configuration 

of the coils employed in WPT circuits significantly impacts their performance [63]. In this study, flat spiral coils are 

utilized as both transmitter and receiver coils, as depicted in Figure 6. 

 

  
(a) (b) 

Figure 6. The geometric structure of the WPT coils, (a) Flat spiral coil, (b) Flat spiral coil variables [52]. 

 

The inductance of the coil, L (µH), is defined [4, 52, 64–66] as seen in Eq.8: 
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The inside diameter of the coil, denoted as Di (m), along with the wire diameter represented by DW (m), and the distance 

between wire turns, indicated as GT (m), are crucial parameters. Additionally, the number of turns is denoted by N. The 

length of the wire used in the coil, lw (m), can be calculated using Eq. 9 [66]. 
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β is the twist factor coefficient which is 1.02 [65]. DO (m) is the outer diameter of the coil and defined [66] by Eq.10: 

 

 2 2O i W T TD D N D G G       
(10) 

 

The DC resistance, RDC (Ω), of a wire, where (S/m) is the electrical conductivity, and AW (m2) is the area of the wire 

cross-sectional area, is calculated [57, 67] by Eq.11: 
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The frequency could be easily added to calculations with the use of electrical conductivity. Because the skin depth, δ (m), 

and the electrical conductivity, (S/m), are related to each other [57] by Eq.12: 
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Where µ (H/m), is the magnetic permeability, and f (Hz) is the frequency. Thus the total resistance of the coil, RW (Ω), is 

calculated by Eq.13: 
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(13) 

Design of the Circuit 

In this research, the resonant inductive coupling wireless power transmission (RIC-WPT) method is employed, utilizing 

the series-series (SS) compensated and single-input single-output (SISO) circuit model depicted in Figure 4(a). The circuit 

analysis is conducted using the equivalent circuit model illustrated in Figure 7. The variable Is (A) represents the current 

in the transmitter circuit, while IL (A) denotes the current in the receiver circuit. 

 

 
Figure 7. Equivalent circuit model of the WPT system [21–23, 41]. 

 

According to Kirchhoff’ voltage law, we can express, as stated in Eq.14 [52] for Figure 7: 
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At the resonant moment (XC = XL) with Eqs.15-16, and the efficiency (ɳ) of the WPT system in Eq.17: 
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4. Simulation Studies 

Before conducting the simulation studies, initial values were determined and listed in Table 1. Subsequently, a Matlab 

code is developed with parametric values based on the number of turns of the coils, aiming to design the most efficient 

coil system. 

Table 1. Known initial values of the design. 

Description Symbol Value 

The operating frequency f 86 kHz 

The diameter of the wire Dw 16 mm 

The voltage of the source Vs 12 V 

Load RL 5 Ω 

The distance between the coil turns Gt 3 mm 

The inside diameter of the coil Di 10 mm 

The number of turns of the transmitter coil is denoted as Nt, while the number of turns of the receiver coil is denoted as 

Nr, as indicated in Table 2. 

Table 2. Parametric values of the WPT coils. 

Parameters Nt Nr 

Parametric Range 5-10 5-20 

Linear Step 5 5 

After the calculations, it is determined that the most efficient winding number was obtained when Nr = 20 and Nt = 10. Is 

(A) is the transmitter circuit current, IL (A) is the receiver circuit current, VL (V) is the voltage value on the load, Pi(W) 

is the input power, PO(W) is the output power, and η (%) is the efficiency in Table 3. 

Table 3. The most efficient number of the turns of the coils. 

Nt Nr Lt (uH) Lr (uH) IS (A) IL (A) VL (V) Pi(W) P0(W) η (%) 

10 20 13.4263 103.5367 70.6 12.59 62.96 847 793 93.61 

The coil system design is created in 3D using the calculated values within the model specified in the ANSYS-Electronics-

Maxwell software. Figure 8 illustrates the complete coil system, with the receiver coil represented by the larger coil and 

the transmitter coil represented by the smaller coil. 



Cicek et al.           KUJES, 9(1):17-32, 2023 

24 

 

 
Figure 8. Maxwell 3D coil system 

The spacing between the coils, denoted as 'z_space' (mm), is systematically varied from 50 mm to 500 mm with a linear 

increment of 50 mm. In wireless power transfer (WPT) systems, there exists a linear relationship between efficiency and 

the coupling coefficient. Hence, the impact of the spacing, as depicted in Figures 9 and 10, on the coupling coefficient 

and mutual inductance is investigated. 

 
Figure 9. The parametric effect of the distance on the coupling coefficient. 

 

 
Figure 10. The parametric effect of the distance on the mutual inductance. 
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Table 4 illustrates the variation of values about distance, showcasing the dynamic nature of the designed coil system. 

Subsequently, the coil system is integrated into the power electronics circuit, which is developed using ANSYS-Simplorer 

software, allowing for co-simulation with ANSYS-Maxwell. The comprehensive WPT system is depicted in Figure 11. 

Table 4. Effect of the distance on mutual inductance and coupling coefficient 

z_space (mm) 50 100 150 200 250 300 350 400 450 500 1000 

M(uH) 10.12 7.64 5.80 4.41 3.36 2.57 1.97 1.52 1.18 0.917 0.081 

k 0.337 0.227 0.161 0.117 0.086 0.064 0.048 0.037 0.028 0.021 0.0018 

 
Figure 11. Power electronics circuit of the entire WPT system [41]. 

Initially, the circuit is co-simulated using calculated values in MATLAB. Both the input power and output power are 

observed during the simulation. Figure 12 depicts the input power [Pi (W)], while Figure 13 illustrates the output power 

[Po (W)]. 

 
Figure 12. Pi (W) with calculated values co-simulation result. 



Cicek et al.           KUJES, 9(1):17-32, 2023 

26 

 

 
Figure 13. Po (W) with calculated values co-simulation result. 

Table 5 displays the observed values and corresponding efficiency in this case. Additionally, for the parametric studies, 

four variables have been chosen: capacitors (Ct, Cr), the distance between coils (z_space), operating frequency (f), and 

load (RL). All these variables, along with their respective parameter values, are presented in Table 6. 

Table 5. The results observed in the study which is made with the calculated values. 

Variables Values Units 

Ct 255.086 nF 

Cr 33.078 nF 

Pi 200 Wp 

Po 55 Wp 

η (%) 27.5  

Table 6. WPT parametric values. 

Variable Names Calculated Values Units Parametric Range Linear Step  

z_space 200 mm 50 - 500 50 

f 86 kHz 70 - 100 1 

RL 5 Ω 1 -20 1 

Ct 255 nF 175 - 325 5 

Cr 33 nF 20 - 150 5 

 

Therefore, a total of 5,189,400 distinct possibilities are intended to be explored in this study. However, due to the 

limitation of ANSYS-Simplorer software, which can handle a maximum of 32,000 possibilities, the study has to be 

divided into four parts. The initial part focuses on the normalization of capacitor values. Figure 14 illustrates the 

relationship between efficiency and variations in capacitor values. 

 
Figure 14. Efficiency characteristic vs. the parametric capacitor values. 
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The subsequent stage involves determining the optimal distance between coils (z_space) for achieving maximum 

efficiency. The capacitor values obtained from the previous phase are utilized in this analysis. The relationship between 

efficiency and distance variation is illustrated in Figure 15. 

 
Figure 15. Efficiency characteristic vs. the parametric z_space (mm) values. 

The optimal distance, as indicated in Table 7, for achieving the highest efficiency is 100 mm. Nevertheless, it should be 

noted that the output power reaches its maximum value when the distance between the coils is set to 200 mm. 

Table 7. Efficient and power values for different z_space values 

z_space (mm) Pi (Wrms) P0 (Wrms) η (% ) 

100 72.56 64.19 88.46 

200 519.29 385.89 74.31 

The third phase of the study involves altering the load value while keeping the chosen capacitor values and the optimal 

z_space value constant. This enables the easy observation of the efficiency variation in response to changes in the load. 

Figure 16 illustrates the relationship between efficiency and load variations, allowing for straightforward analysis. 
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Figure 16. Efficiency characteristic vs. the parametric z_space (mm) values. 

The fourth phase of the study involves the determination of the operating frequency, with all other parameters having 

been established. The operating frequency has been analyzed based on both calculated values and empirical observations. 

Figure 17 illustrates the relationship between the output power and various frequency values using the calculated capacitor 

values. 

 
Figure 17. Po (W) vs. the parametric frequency values with calculated capacitor values. 

Likewise, Figure 18 shows the output power with the determined capacitor values against different frequency values. 

 
Figure 18. Po (W) vs. the parametric frequency values with calculated capacitor values. 
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Lastly, a final simulation was conducted to assess the benefits of the parametric approach. A new power electronics circuit 

was designed in ANSYS-Simplorer, omitting the co-simulation aspect. Subsequently, the circuit was simulated using 

Simplorer’ built-in components. The efficiency results of the three studies are presented in Table 8. 

Table 8. The comparison of the results. 

Studies Pi (Wrms) P0(Wrms) η (%) 

Calculation result 847 793 93.61 

Results without co-simulation 848.52 594 70.39 

Results with Parametrically co-simulation 519.29 385.88 74.31 

 

The efficiency for WPT is highly affected by parameters such as the distance between transmit and receive coils, the 

coupling coefficient and resonance. Compared with the estimation studies based on simulations with parameters such as 

distance between the coils, alignment errors, in the studies conducted for the estimation of the efficiency [32, 41, 47]. 

Also, the efficiency value obtained in this study, with a rate of approximately 75%, suggests the parametric simulation 

approach as a very useful method for designers. Essentially, the efficiency does not depend only on the design of the coils 

and the distances between them. The efficiency of the power electronics circuit is very effective in this regard and should 

be considered together with the coil design. 

5. Conclusion 

This study introduces and analyses a wireless power transfer model through the process of definition, design, and 

parametric analysis. The system design calculations are performed using Matlab software in a parametric manner. It is 

observed that the results obtained from the equations used for calculations related to the flat spiral coil, mutual inductance, 

and coupling coefficient align closely with the simulation results. As a result, it is concluded that these equations can be 

effectively employed in future research on wireless power transfer.  

The proposed method for WPT design demonstrates superior efficiency compared to the components available in 

ANSYS-Simplorer software and offers the advantage of simplified implementation with standardized components. 

Moreover, contrary to the conventional assumption that increasing the current on the transmitter side would lead to 

increased power on the receiver side, different outcomes have been obtained. It is determined that the power electronics 

circuit elements, correctly identified through parametric analysis, draw less current from the power source. 

As a foundation for future studies in the field, it has been established that the design and operation of the coil should be 

conducted through co-simulation, while the determination of power electronics components should be based on 

parametric analysis using the computed outcomes. It is worth noting that, to achieve a constant load, all circuit parameters 

should be adjusted or normalized concerning a specific value. 
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