

AQUATIC SCIENCES AND ENGINEERING

Aquat Sci Eng 2023; 38(4): 212-221 • DOI: https://doi.org/10.26650/ASE20231282270

Research Article

Fish and Shellfish Diversity of Malam *Beel*, Bangladesh: Status, Trends, and Management Strategies

Mst. Jannatul Ferdous¹ [®], Mst. Armina Sultana² [®], Rasel Mia² [®], Debasish Pandit³ [®], Mohd Golam Quader Khan⁴ [®], Md. Samsul Alam⁴ [®]

Cite this article as: Ferdous, M.J., Sultana, M.A., Mia, R., Pandit, D., Khan, M.G.Q., M.S.A. (2023). Fish and shellfish diversity of malam beel, bangladesh: status, trends, and management strategies. Aquatic Sciences and Engineering, 38(4), 212-221. DOI: https://doi.org/10.26650/ASE20231282270

ABSTRACT

Most of the waterbodies in Bangladesh's north-eastern *haor* basin have seen a gradual decline in their biodiversity, but little study has been done to determine their current condition. To address this issue, this research was conducted in the Malam beel under the Hakaluki *haor* – one of the largest wetland resources of the country. The study was conducted using a pre-tested question-naire and a direct catch assessment survey in the *beel*. From 11 orders and 32 families, a total of 69 fish and shellfish species were identified. Of the species documented, 15.94% were classified as abundant, 39.13% were common, 27.54% were moderately available, and 17.39% were rare. Among the orders, Cypriniformes accounted for 37.68% of the total fish recorded. The most prevalent family was Cyprinidae found in Malam *beel*. Based on the findings, it can be concluded that Malam *beel* is a highly valuable inland open water body that has the potential to function as a key source of fishery resources as well as a gene bank for various fish species. However, some manmade and natural threats such as fishing by dewatering, brush pile fishing, illegal/destructive fishing and siltation were identified during the present study. Therefore, to ensure the sustainable maintenance of these water bodies, ecosystem-based fisheries management involving the local community is strongly advised.

Keywords: Biodiversity, threats, conservation, management

INTRODUCTION

Fisheries and aquaculture are of paramount importance for ensuring global food security. These sectors are instrumental in supplying essential animal protein to billions of individuals across the globe, while also serving as a source of livelihood for 10-12% of the world's population (FAO, 2012). Bangladesh is rich in Inland and marine fisheries that make up the country's diverse fisheries resources. Bangladesh boasts abundant water resources, which host a diverse array of aquatic ecosystems that serve as habitats for a wide variety of species of fish (Sultana et al., 2016; Islam & Sultana, 2016). The biodiversity is extremely abundant, with about 260

freshwater fish species (DoF, 2018; Khan et al., 2018). In terms of inland open water capture production, Bangladesh secured the third position globally. The most popular animal source food in Bangladesh is fish, which is consumed at an average rate of 14 kg per year across all societal categories, meeting up to 60% of the country's demand for animal protein (FAO, 2022; DoF, 2018; Khan et al., 2018). Following China and India, Bangladesh is the third-ranked country in Asia for its diverse range of aquatic fish species. The country is home to around 800 species that can be found in freshwater, marine water, and brackish waters (Shamsuzzaman et al., 2017). However, a notable downward trend of fish diversity within Bangladesh's freshwater

ORCID IDs of the author: M.J.F. 0000-0001-9562-1851; M.A.S. 0000-0001-6787-6806; R.M. 0000-0001-9018-9326; D.P. 0000-0002-5228-2201; M.G.Q.K. 0000-0002-9421-5269; M.S.A. 0000-0003-0476-1766

¹Department of Fish Biology and Genetics, Faculty of Fisheries, Sylhet Agricultural University, Bangladesh

²Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Bangladesh

³Department of Oceanography, Khulna Agricultural University, Bangladesh

⁴Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Bangladesh

Submitted: 28.06.2023

Revision Requested: 08.08.2023

Last Revision Received: 15.08.2023

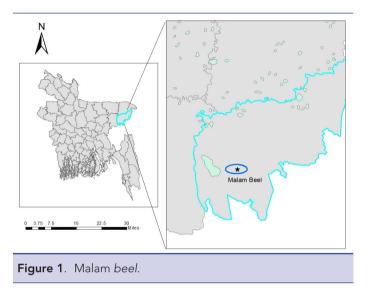
Accepted: 24.08.2023

Online Published: 18.09.2023

Correspondence: Mst. Armina Sultana E-mail: armina.arm@sau.ac.bd

resources has become evident, with many freshwater species experiencing decreasing population trends (Hanif et al., 2015; Kamal et al., 2022; Das et al., 2022). About a quarter of these species are categorized as threatened, with 25 vulnerable, 30 endangered, and 9 severely endangered species. Also, 27 species have been listed as being near threatened (IUCN Bangladesh, 2015).

The term 'beel,' which originates from the Bengali language, pertains to a substantial surface water body that is equipped with internal drainage channels for the purpose of collecting surface runoff water (Banglapedia, 2021; Kunda et al., 2022). Bangladesh has thousands of *beels*, and indigenous fishes used the *beel* as a natural habitat for food and shelter (Rahman et al., 2019). Malam *beel* is an important *beel* in the Hakaluki *haor*. It is 45 km away from Kulaura bazar. During the monsoon season, the *beel* is flooded yet remains dry for over six months. It is home to different fauna and flora. Moreover, the *beel* serves as a source of livelihood for thousands of people, providing them with income as well as food, fuelwood, recreational opportunities, and aesthetic benefits.


However, several human interventions, including the building of drainage systems, sluice gates, and flood control embankments, as well as the conversion of waterlogged area to cropland, have led to a reduction in the water area of the beel ecosystems, thereby posing a severe threat to aquatic life. Additionally, the careless application of herbicides is also contributing to the degradation of the beel ecosystem. Pollution from household, industrial, and agrochemical wastes, as well as mining runoff, has resulted in the demise of many aquatic organisms (Chakraborty, 2011; Pandit et al., 2023). Physicochemical characteristics, climatic parameters, industrial pollutants, municipal wastes, agricultural run-off, and irregular floods are all contributing to the decline of biodiversity in the Malam beel. Therefore, it is essential to implement practical management measures to enhance the biodiversity status of the beel, upon which local communities depend. However, to devise effective management strategies, understanding the current situation, patterns, and dangers to the aquatic biodiversity of the beel is essential. Due to a scarcity of existing research in this area, our study endeavors to fulfill a vital purpose. Specifically, our investigation aims to evaluate the current state of aquatic biodiversity within Malam beel. By identifying discernible trends and potential threats, we seek to contribute to a comprehensive understanding of this vital water body. Furthermore, our study strives to generate comprehensive guidelines that facilitate effective management strategies for sustaining the ecological balance of the Malam beel.

MATERIALS AND METHODS

Study site and duration

The study was conducted in the Malam *beel* which is a notable *beel* of Hakaluki *haor* (Figure 1), is situated 45 km away from Kulaura bazar. The total area of the Malam *beel* is around 400 acres during the rainy season and 70 acres in the dry season. A geographically suitable coverage that would include a range of fish biodiversity was one of the main selection factors for the study area, as well as the involvement of local fishers who rely on the

beel for their livelihood. Four villages were selected for interview surrounding the *beel* named Borni, Khutaura, Kazirbond and Golapnagar. The research was done over a span of six months, from October 2017 to March 2018. But the catch assessment of fish was done only in the dry season (December, January, and February). Fishing in the Malam *beel* is exclusively conducted during the dry season. In the rainy season, the *beel* becomes submerged underwater, rendering fishing activities impractical during that period.

Data collection methods

In this study, 80 fishers, 10 aratdars (fish trader), and 10 fish retailers from four chosen villages made up the total for the questionnaire interviews (QIs). Four focus group discussions (FGDs) were conducted in these villages, with participants from different age groups of fishers. Following the collection of data through FGDs and QIs, key informant interviews (KIIs) were conducted with experienced fishers, Upazila Fisheries Officers (UFO), District Fisheries Officers (DFO), community leaders, and NGO personnel.

Collection of fish samples

Fish and shellfish samples were taken during the catch from previously known fishers and local fish landing sites at 15 day intervals throughout the study period. In the study region, local fishers employ a variety of fishing equipment, such as seine nets, gill nets, lift nets, hooks, and traps. Each of these methods is designed to capture specific species and sizes of fish, and their efficiency varies, as outlined in Kundu et al.'s (2020) study. The sampling methods used in data collection were consistent in the dry season.

Identification of the collected fish samples

Based on their distinctive morphological traits, the collected fish and shellfish were divided into distinct categories. If a species proved challenging to identify during fieldwork, it was preserved in a buffered formalin solution of 10% and later transported to the Fisheries Biology and Genetics laboratory at Bangladesh Agricultural University for in-depth examination. The process of identification encompassed analyzing the specimens' morphometric and meristic traits, as well as their coloration. The taxonomic evaluation adhered to the methods detailed by Rahman (2005), Talwar & Jhingran (1991), and IUCN Bangladesh (2015), while the classification of fish species aligned with the system established by Nelson (2006).

Determination of availability status

The fish and shellfish were identified in terms of the respondent's opinion, their frequency of occurrence and finally, categorized into four classes based on their availability status (Pandit et al., 2020,2021). The categories were defined as: abundantly available (AA) - species consistently observed year-round, repeating over 75% of the time; commonly available (CA) - species frequently seen but in smaller quantities, repeating 51-75% of the time; moderately available (MA) - species encountered occasionally, with a repetition rate ranging from 26 to 50%; and rarely available (RA) - species observed infrequently, repeating in small amounts at a repetition rate equal to or less than 25% (Pandit et al., 2020,2021; Kamal et al., 2022; Kunda et al., 2022).

Statistical analysis

The gathered data underwent input, preprocessing, and analysis using V25.0 of the Statistical Package for the Social Sciences (SPSS) software. A map of the study area was crafted by integrating ArcGIS 10.0 software with the assistance of a global positioning system (GPS).

RESULTS AND DISCUSSION

Fish and shellfish diversity status

In Malam *beel*, 69 species of fauna were identified, including 67 species of finfish and 2 species of prawns, which belonged to 11 different orders and 32 families (Table 2). Although there were no previous studies on fish and shellfish diversity in this *beel* for comparison, the current study provides a baseline for future fish assemblage assessments. Previous studies on fish diversity and richness in the surrounding areas supported the findings of this study. Numerous studies have examined fish species diversity in various water bodies across Bangladesh (Table 1).

The study's findings revealed a distribution of fish and shellfish species availability as follows: 15.94% were abundantly available, 39.13% were commonly available, 27.54% were moderately available, and 17.39% were rarely available. Respondents attributed

this pattern to a diminishing fish biodiversity. Kamal et al. (2022) mirrored this trend in Kawadighi *haor*, with 18% abundantly available, 20% commonly available, 42% moderately available, and 20% rarely available species. Parallel results have emerged from studies focused on fish diversity in river and *haor* ecosystems. For instance, Pandit et al. (2020) found that the Gurukchi River displayed a predominance of rarely available fish species (29.82%), followed by commonly available (28.07%), moderately available (22.81%), and abundantly available (19.30%). Similarly, Pandit et al. (2021) documented 17.4% abundantly available, 27.5% commonly available, 31.9% moderately available, and 23.1% rarely available fish species in the Dhanu River and its surrounding *haor* ecosystems. These collective findings highlight the consistent distribution of fish species across different water bodies within the region.

Cypriniformes, Siluriformes, and Anabantiformes were discovered to be the most prominent orders among the eleven recognized orders, contributing for 37.68%, 23.19%, and 11.59% of the total fish population in Malam *beel*, respectively (Figure 3). Other eight orders were constituted by Perciformes, Synbranchiformes, Clupeiformes, Osteoglossiformes, Beloniformes, Decapoda, Tetraodontiformes, and Cyprinodontiformes. Many studies have consistently shown that Siluriformes and Cypriniformes are the most common orders in Bangladesh (Rahman, 2005; Iqbal et al., 2015; Hossain et al., 2016; Mondol et al., 2015; Sultana et al., 2018, 2019; Debnath et al., 2020; Talukder et al., 2021), which is like the current study. Sulta-

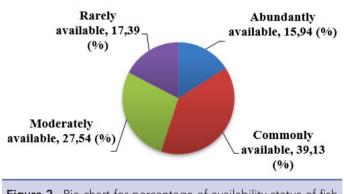


Figure 2. Pie chart for percentage of availability status of fish and shellfish species in Malam *beel*.

Table 1.	Comparison of fish and	d shellfish diversity	with other studies.		
Sl. No.	Study Area	Order	Family	No. of Species	References
1	Malam beel	11	32	69	Present Study
2	Hakaluki <i>haor</i>	10	28	83	lqbal et al. 2015
3	Hakaluki <i>haor</i>	12	27	63	Aziz et al. 2021
4	Bhawal beel	10	23	56	Sultana et al. 2019
5	Chalan beel	10	26	78	Siddique et al. 2016
6	Basurabad beel	6	-	33	Rahman et al. 2019
7	Banar River	10	24	62	Sultana et al. 2018
8	Juri River	-	25	75	Islam et al. 2019
9	Basuakhali beel,	10	21	38	Rahman et al. 2019
10	Shari-Goyain River	9	27	66	Talukder et al. 2021

Aquat Sci Eng 2023; 38(4): 212-221 Ferdous, Sultana, Mia, Pandit, Khan and Alam. Fish and Shellfish Diversity of Malam *Beel*, Bangladesh: Status, Trends, and Management Strategies

Table 2.		Recorded tish and shelifish species from the	is from the Malam <i>beel</i> .								
SL No.	Order	ylimeŦ	əmsN əifitn:	əmeN dzilg	əmeN leoo	sutst2 tnes	Conservation	sutst2	sutste eviti	. Fishing Gear	h Preference
			Scie	iug	רי	Pre	BD	GL	۶N	nojeM	oteO
~	Anabantiformes	Osphronemidae	Trichogaster fasciata (Bloch & Schneider 1801)	Banded gourami	Baro khlisha	CA	LC	LC	Native	CN	BC
2	Anabantiformes	Osphronemidae	Trichogaster fasciata (Bloch & Schneider 1801)	Honey gourami	Lal khalisha	CA	Ŋ	C	Native	S	BC
с	Anabantiformes	Anabantidae	Anabas testudineus (Bloch, 1792)	Climbing perch	Koi	MA	Ľ	C	Native	S	TC
4	Anabantiformes	Channidae	Channa marulius (Hamilton, 1822)	Giant snakehead	Gozar	RA	ЫN	LC	Native	т	TC
Ŋ	Anabantiformes	Channidae	Channa striata (Bloch, 1793)	Snakehead murrel	Shol	CA	Ľ	C	Native	т	TC
9	Anabantiformes	Channidae	Channa orientalis (Bloch & Schneider, 1801)	Asiatic snakehead	Cheng	CA	L C	٨U	Native	т	TC
7	Anabantiformes	Channidae	Channa punctata (Bloch, 1793)	Spotted Snakehead	Taki	CA	LC	LC	Native	т	TC
∞	Anabantiformes	Nandidae	Nandus nandus (Hamilton, 1822)	Gangetic leaffish	Meni/Veda	CA	Γ	C	Native	SN	TC
6	Beloniformes	Belonidae	Xenentodon cancila (Hamilton, 1822)	Freshwater garfish	Kankila	CA	Ľ	C	Native	SN	BC
10	Beloniformes	Hemiramphidae	Hyporhamphus limbatus (Valenciennes, 1847)	Congaturi halfbeak	Ekthutia	CA	L C	C	Native	SN	BC
1	Clupeiformes	Dorosomatidae	Gudusia chapra (Hamilton, 1822)	Indian river shad	Chapila	AA	٨U	C	Native	ВN	TC
12	Clupeiformes	Dorosomatidae	Corica soborna (Hamilton, 1822)	The Ganges River sprat	Kachki	¥	C	C	Native	CN	TC
13	Cypriniformes	Cobitidae	Lepidocephalichthys guntea (Hamilton, 1822)	Guntea Ioach	Gutum	CA	C	C	Native	SN	TC
14	Cypriniformes	Botiidae	Botia dario (Hamilton, 1822)	Bengal Ioach	Bou/Rani	CA	EN	C	Native	SN	BC
15	Cypriniformes	Cyprinidae	Labeo rohita (Hamilton, 1822)	Rohu	Rui	MA	C	C	Native	SN	TC
16	Cypriniformes	Cyprinidae	Labeo catla (Hamilton, 1822)	South Asian carp	Catla	RA	Ľ	Ш И	Native	SN	TC
17 18	Cypriniformes Cypriniformes	Cyprinidae Cyprinidae	Cirrhinus mrigala (Bloch, 1795) Cirrhinus reba (Day, 1878)	Mrigal carp Reba carp	Mrigal Lachu	MA CA	N N T N	LC VU	Native Native	SN SN	7C 7C
19	Cypriniformes	Cyprinidae	Cyprinus carpio (Linnaeus, 1758)	Common carp	Carpio	MA	LΝ	١٧	Native	SN	TC

	Ferdous, Sultana, M	lia, Pai	ndit, Kh	an and	Alam	n. Fis		quat Sci Ei hellfish Di				ngladesh	: Status, Tro	ends, and I	Vanager	nent St	rategies	
	tch Preference	њЭ	TC	TC	TC	TC	TC	TC	TC	TC	TC	BC	BC	BC	TC	TC	TC	
	or Fishing Gear	įeM	SN	SN	SN	CN	CN	C	CN	CN	S	C	S	CN	CN	CN	S	• • •
	sutsts evitsl	N	Non- native	Non- native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	
	sufat2	GL	Ч	Ш И	C	C	C	C	Ľ	Ľ	C	Ш И	C	U L	LC	LC	C	
	Conservation	BD	Ľ	Γ	ΝT	٨U	C	C	LΖ	C	Γ	DD	ΤZ	DD	LC	LC	μ	
	sutst2 tneser	Ы	RA	MA	MA	AA	AA	MA	MA	AA	RA	CA	CA	MA	CA	AA	RA	
	emeN leool		Silver carp	Grass carp	Gonia	Tit punti	Jat punti	Phutanio punti	Shorputi	Mola	Dhela	Darkina	Ghora chela	Chela	Teri punti	Mola punti	Phulo-chela	
	əmsN dzilgn	Э	Freshwater cyprinid fish	Ray-finned fishes	Kuria labeo	Ticto barb	Spotfin swamp barb	Spottedsail barb	Olive barb	Mola carplet	Cotio	Stripped flying barb	Chela gora	Silver razor belly minnow	One spotted barb	Glass-barb	Finescale razorbelly min- now	
from the Malam beel.	əmsN ɔifitnəi	S	Hypophthalmichthys molitrix (Valenciennes, 1844)	Ctenopharyngodon idella (Valenciennes, 1844)	Labeo gonius (Hamilton, 1822)	Pethia ticto (Hamilton, 1822)	Puntius sophore (Hamilton, 1822)	Pethia phutunio (Hamilton, 1822)	Systomus sarana (Hamilton, 1822)	Amblypharyngodon mola (Hamilton, 1822)	Osteobrama cotio (Hamilton, 1822)	Esomus danrica (Hamilton, 1822)	Securicula gora (Hamilton, 1822)	Salmostoma acinaces (Valenciennes, 1844)	Puntius terio (Hamilton, 1822)	Pethia guganio (Hamilton, 1822)	Salmostoma phulo (Hamilton, 1822)	
d fish and shellfish species from the Malam <i>b</i> e	YlimsA		Xenocyprididae	Xenocyprididae	Cyprinidae	Cyprinidae	Cyprinidae	Cyprinidae	Cyprinidae	Danionidae	Cyprinidae	Danionidae	Danionidae	Danionidae	Cyprinidae	Cyprinidae	Danionidae	

Ц

S

Native

Ŋ

Ч

AA

Jelly puti

Golden barb

Pethia gelius (Hamilton, 1822)

Cyprinidae

Cypriniformes

35

Cypriniformes

34

Cypriniformes

20

Order

SL No.

Cypriniformes

21

Cypriniformes Cypriniformes

22 23 24

Cypriniformes

Cypriniformes

25

216

27

Cypriniformes

26

Cypriniformes

Cypriniformes

28

Cypriniformes

29

Cypriniformes

30

Cypriniformes

31

Cypriniformes

32

Cypriniformes

33

Aquat Sci Eng 2023; 38(4): 212-221 Ferdous, Sultana, Mia, Pandit, Khan and Alam. Fish and Shellfish Diversity of Malam Beel, Bangladesh: Status, Trends, and Management Strategies

Table 2.		Recorded fish and shellfish species from the	from the Malam beel.								
SL No.	Order	ylimsA	əmsN zifitnə	əmsN dzilgı	əmeN leoo	sutst2 tnese	Conservation	sutet2	sutste evite	ەr Fishing Gear	ch Preference
			Sci	Ξ	٦	Pro	BD	GL	N	oįsM	oteO
36	Cypriniformes	Cyprinidae	Labeo bata (Hamilton, 1822)	Bata labeo	Bata	МA	LC	Ľ	Native	SN	TC
37	Cypriniformes	Cyprinidae	Labeo calbasu (Hamilton, 1822)	Orange Fin Iabeo	Kalibaus	MA	LO	LC	Native	SN	TC
38	Cypriniformes	Psilorhynchidae	Psilorhynchus balitora (Hamilton, 1822)	Balitora Minnow	Balichata	MA	LC	C	Native	CN	TC
39	Cyprinodontiformes	Aplocheilidae	Aplocheilus panchax (Hamilton, 1822)	Blue panchax	Kanpona	CA	LC	Γ	Native	CN	BC
40	Decapoda	Soleniceridae	Solenocera crassicornis (H. Milne Edwards, 1837)	Red prawn	Gura chingri	AA	LC	ЫN	Native	⊢	ЦС
41	Decapoda	Palaeomonidae	Macrobrachium rosenbergii (De Man, 1879)	Giant river prawn	Golda chingri	CA	LC	LC	Native	⊢	TC
42	Osteoglossiformes	Notopteridae	Notopterus notopterus (Pallas, 1769)	Bronze featherback	Foli	CA	٨U	LC	Native	SN	ЦС
43	Osteoglossiformes	Notopteridae	Chitala chitala (Hamilton, 1822)	Clown knifefish	Chital	RA	БN	ΝT	Native	CN	ЦС
44	Perciformes	Ambassidae	Chanda nama (Hamilton, 1822)	Elongate glass perchlet	Lamba chanda	MA	LC	C	Native	SN	BC
45	Perciformes	Ambassidae	Parambassis ranga (Hamilton, 1822)	Highfin glassy perchlet	Gol chanda	CA	LC	LC	Native	ND	BC
46	Perciformes	Cichlidae	Oreochromis mossambicus (Peters, 1852)	Hawaiian perch	Tilapia	MA	C	٨U	Non-native	SN	ЦС
47	Perciformes	Badidae	Badis badis (Hamilton, 1822)	Blue perch	Napit koi	MA	LΝ	C	Native	ИD	TC
48	Perciformes	Gobiidae	Glossogobius giuris (Hamilton, 1822)	Tank goby	Bele	CA	C	LC	Native	⊢	BC
49	Siluriformes	Siluridae	Wallago attu (Bloch & Schneider, 1801)	Freshwater shark	Boal	CA	٨U	٨U	Native	т	ЦС
50	Siluriformes	Siluridae	Ompok pabo (Hamilton, 1822)	Pabo catfish	Pabda	CA	CR	ΝT	Native	ЛQ	ЦС
51	Siluriformes	Siluridae	Ompok pabda (Hamilton, 1822)	Butter catfish	Modhu pabda	RA	ЫN	ΝT	Native	SN	ЦС
52	Siluriformes	Pangasiidae	Pangasius pangasius (Hamilton, 1822)	Pungas catfish	Deshi pan- gus	RA	ЫN	LC	Native	SN	ЦС
53	Siluriformes	Ailiidae	Eutropiichthys vacha (Hamilton, 1822)	Batchwa vacha	Bacha	CA	C	LC	Native	CN	ЦС
54	Siluriformes	Horabagridae	Pachypterus atherinoides (Bloch, 1754)	Indian potasi	Batashi	Ą	C	NE	Native	S	TC

Table 2.Recorded fish and shellfish species from the Malam beel.

										()			()				()	
	tch Preference	Ca	TC	TC	TC	TC	TC	TC	TC	TC	TC	TC	TC	TC	TC	TC	BC	ed - Cast
	or Fishing Gear	įeM	Т	Т	CN	CN	CN	SN	CN	Т	H/T	H/T	⊢	⊢	⊢	⊢	LN	ndanger Jet, CN ·
	sutate svital	J	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	R - Critically ei Jet, LN – Lift N
	suf6t2	GL	ĽC	Γ	LC	C	C	LC	LC	LC	LC	LC	LC	Ш Z	LC	٨U	LC	d, and C N – Gill N
	Conservation	BD	٨U	CR	Ľ	C	ЛШ	LC	LC	LC	LC	Γ	LC	ЫN	DD	٨U	LC	dangere Net, Gl
	resent Status	Ч	CA	RA	AA	AA	MA	RA	CA	MA	CA	CA	RA	MA	MA	RA	CA	EN - End I - Seine
	emeN lsool		Air	Baghair	Gulsha tengra	Tengra	Rita	Guizza air	Bujuri tengra	Magur	Shing	Kabasi tengra	Guchi baim	Baim	Tara baim	Kuchia	Potka	VU - Vulnerable, rely available; SN
	əmeV dzilgni	3	Long-whiskered catfish	Gangetic goonch	Bleeker's mystus	Asian striped catfish	Rita	Giant river- catfish	Striped dwarf catfish	Walking catfish	Stinging catfish	Gangetic mystus	Striped spiny eel	Zig-zag eel	Lesser spiny eel	Gangetic mudee	Ocellated puffer fish	J, DD - Data deficient, ately available, RA - Ra
om the Malam <i>beel</i> .	əmsV əititnəi:	ÞS	Sperata aor (Hamilton, 1822)	Bagarius bagarius (Hamilton, 1822)	Mystus bleekeri (Day, 1877)	Mystus vittatus (Bloch, 1794)	Rita rita (Hamilton, 1822)	Sperata seenghala (Sykes, 1839)	Mystus tengara (Hamilton, 1822)	Clarias batrachus (Linnaeus, 1758)	Heteropneustes fossilis (Bloch, 1794)	Mystus cavasius (Hamilton, 1822)	Mastacembelus pancalus (Hamilton, 1822)	Mastacembelus armatus (Lacepede, 1800)	Macrognathus aculeatus (Bloch, 1786)	Ophichthys cuchia (Hamilton, 1822)	Leiodon cutcutia (Hamilton, 1822)	BD – Bangladesh, GL – Global, LC - Least concern, NT - Near threatened, NE - Not evaluated, DD - Data deficient, VU - Vulnerable, EN - Endangered, and CR - Critically endangered (IUCN Bangladesh, 2015); AA - Abundantly available, CA - Commonly available, MA - Moderately available, RA - Rarely available; SN – Seine Net, GN – Gill Net, LN – Lift Net, CN – Cast Net, H – Hooks, T – Traps; TC – Target Catch, BC – Bycatch.
Recorded tish and shelltish species trom the Malam beel	ylimeA		Bagridae	Sisoridae	Bagridae	Bagridae	Bagridae	Bagridae	Bagridae	Clariidae	Heteropneustidae	Bagridae	Mastacembelidae	Mastacembelidae	Mastacembelidae	Synbranchidae	Tetraodontidae	BD – Bangladesh, GL – Global, LC - Least concern, NT - Nea (IUCN Bangladesh, 2015); AA - Abundantly available, CA - C Net, H – Hooks, T – Traps; TC – Target Catch, BC – Bycatch.
	Order		Siluriformes	Siluriformes	Siluriformes	Siluriformes	Siluriformes	Siluriformes	Siluriformes	Siluriformes	Siluriformes	Siluriformes	Synbranchiformes	Synbranchiformes	Synbranchiformes	Synbranchiformes	Tetraodontiformes	angladesh, GL – Global, Bangladesh, 2015); AA - – Hooks, T – Traps; TC –
Table 2.	SL No.		55	56	57	58	59	09	61	62	63	64	65	99	67	68	69	BD – B (IUCN Net, H

na et al. (2019) revealed the order-based percentage analysis of the existing aquatic fauna from Bhawal *beel* and found as Cypriniformes (33.93%), Siluriformes (21.43%) and Perciformes (19.65%).

In Malam *beel*, the prevailing family was identified as Cyprinidae, contributing to 23.19% of the overall fish diversity (Figure 3b). While smaller proportions were attributed to families like Bagridae, Anabantidae, and others, their presence was observed. These outcomes parallel the conclusions drawn from earlier investigations by Sultana et al. (2019) on Bhawal *beel* and Islam et al. (2019) on Juri River, both of which underscored the dominance of Cyprinidae as the primary family in terms of fish population.

According to IUCN Bangladesh (2015), 21.74% of the identified fish and shellfish in Malam *beel* were classified as endangered, while 18.84% were near threatened (Figure 3c). However, most of the fish populations (55%) were categorized as least concern (LC). When considering the global IUCN status, most fish species in Malam *beel* were categorized as least concern (LC), constituting 73.90% of the total. Following this, near threatened (NT), data deficient (DD), and not evaluated (NE) species accounted for 8.70% each (IUCN Bangladesh, 2015).

The investigation unveiled that within Malam *beel*, there existed a collective of 15 fish species categorized as threatened. Among these, 6 were deemed vulnerable, 7 as endangered, and 2 as critically endangered, as per the IUCN Bangladesh (2015) classification (Figure 6). In comparison, previous studies conducted in

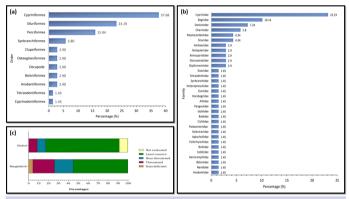
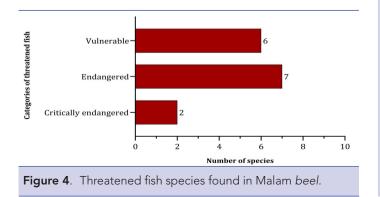



Figure 3. Recorded fish and shellfish species distribution according to their (a) orders, (b) families and (c) conservation status.

Hakaluki *Haor* and Bhawal *beel* identified 41 and 13 threatened species, respectively, with varying levels of vulnerability. Similarly, the Juri River study found 19 threatened species, with 10 being vulnerable, 8 endangered, and 1 critically endangered, which aligns with the present study's findings.

Threats to fish biodiversity of Malam beel

The fish and shellfish species diversity of Malam beel is affected by both natural and anthropogenic factors. The major threats identified by respondents were overfishing, fishing by dewatering, and brush pile fishing, which were reported by 85%, 77.5%, and 72.5% of the respondents, respectively. Additionally, the use of illegal/destructive fishing equipment, the unregulated use of insecticides, pesticides and chemical fertilizers on agricultural lands, siltation and sedimentation, and water abstraction for irrigation were identified as factors affecting fish biodiversity, with 65%, 56.25%, 51.25%, and 47.5% of respondents reporting these as issues. The conversion of beel to agricultural fields and habitat loss due to siltation were also mentioned. Climate change was identified as a natural cause of impact on the beel's biodiversity due to changes in water temperature and extreme rainfall events. The lack of awareness and fishing by poor and illiterate individuals were also mentioned as contributing factors. Furthermore, Oreochromis mossambicus, Hypophthalmichthys molitrix, and Ctenopharyngodon idella are non-native fish species that have been introduced to various aquatic environments for different purposes. While they are not traditionally considered invasive species in the sense of causing significant harm to native ecosystems in Bangladesh. These findings highlight the urgent need to take measures to address the identified threats to fish biodiversity in Malam beel. Details shown in Table 3.

The decrease in fish and shellfish abundance observed in Hakaluki *haor* in northeast Bangladesh can be attributed to several factors such as the drying up of *beels*, flooding, siltation, overfishing, use of harmful fishing tools, temperature fluctuations, and the use of inorganic fertilizers to catch fish. Similar trends

Table 3.Threats to fish biodiversity of Malam beel.

Factors affecting fish biodiversity	Percentage of respondents
Overfishing	85.0%
Fishing by dewatering	77.5%
Brush pile fishing	72.5%
Use of illegal/destructive fishing gears	65.0%
Unregulated application of pesticides, insecticides, chemical fertilizers on agri- cultural lands.	56.25%
Siltation and sedimentation	51.25%
Water abstraction for irrigation	47.5%
Climate change (altered pattern in tem- perature and rainfall)	31.25%
Construction of developmental infra- structure	26.25%
Water pollution	10.0%

have been identified as catalysts for the decline in biodiversity in various other investigations conducted by Rahman et al. (2019), Sultana et al. (2019), Das et al. (2022), Tasnim et al. (2022), and Sultana et al. (2022). Additionally, the conversion of beel fringes into agricultural fields remains an ongoing process in the region. Overfishing stands out as a prominent contributor to the decline in fisheries, while the application of pesticides, known for their high toxicity, poses a substantial threat to aquatic organisms, impacting the integrity and function of ecosystems (Parveen and Faisal, 2002). The sedimentation of water bodies also emerges as a significant factor contributing to the deterioration and degradation of aquatic ecosystems (Craig et al., 2004). In the context of Kawadighi haor, crucial drivers that have led to a reduction in species diversity within the beel encompass dewatering, overfishing, the usage of destructive fishing equipment, intensified agricultural activities, road and embankment construction, pesticide utilization, sediment deposition, barrage establishment, improper fish farming, and drought (Kamal et al., 2022).

Management options

Preventing overfishing, illegal fishing equipment usage, and the destruction of fish eggs and seeds through illegal fishing methods and tools is crucial. Enforcing minimum mesh size requirements for various gears will help accomplish this and prohibiting the use of monofilament nets.

The unregulated building of bridges, culverts, sluice gates, and flood control embankments has disrupted the natural migration patterns of fish during their spawning, breeding, and feeding activities. To counteract the adverse effects on fishery resources, it has become imperative to establish and uphold fish-friendly migration pathways.

To safeguard fish biodiversity, it is essential to prevent the complete draining of *beels*, and the withdrawal of water from *beels* for irrigation in the dry season should be managed or discouraged. To ensure a minimum water depth in the *beel*, the extraction of water needs to be regulated.

It is important to limit the widespread use of inorganic fertilizers and insecticides through integrated pest management programmes.

To keep a sustainable year-round production, stock enhancement programs should be implemented. Species like thai sarpunti, silver carp, common carp, catla, mrigal, kalibaus, and rui can be introduced in the *beel*.

Fish sanctuaries should be established, and brush pile fishing should be stopped to conserve the existing fish species for sustainable fish production.

Existing fisheries rules and regulations should be strictly enforced.

To achieve sustainable management of the *beel* ecosystem, it is vital to formulate ecosystem-based management strategies that engage various stakeholders, such as researchers, policymakers, resource managers, governmental bodies, and non-governmental organizations. These strategies should focus on balancing the ecological, economic, and social aspects of the *beel*'s management while preserving its biodiversity and ecosystem functions. These plans ought to focus on increasing production, sustainably preserving biodiversity, and enhancing local fishermen's incomes. Further research is necessary in this area to enhance biodiversity, production patterns, and conserve resources.

CONCLUSION

The study conducted in Malam beel, nestled within the expansive Hakaluki Haor, addresses the lack of understanding about the current state of aquatic biodiversity. Across eleven orders and 32 families, the research meticulously recorded 69 distinct fish and prawn species. Notably, Cypriniformes emerged as a key contributor, constituting 37.68% of the total fish population, with Cyprinidae being the dominant family. This study shines a spotlight on the remarkable potential of Malam Beel as a valuable inland water body. It holds promise as a critical fishery resource and a repository for preserving genetic diversity. Amidst this promise, the study also uncovers threats, from human-induced activities like dewatering and destructive fishing to natural processes such as siltation, posing significant challenges to the ecosystem's sustainability. These findings underscore the call for ecosystem-based fisheries management that actively involves local communities. The importance of conserving diverse fish populations has become evident. Balancing the availability of resources with conservation emerges as a vital consideration, necessitating comprehensive and adaptable management strategies. By embracing an ecosystem-based approach, we can harness the potential of these water bodies while safeguarding their vitality for the well-being of current and future generations.

Conflicts of interest: The authors assert the absence of any conflicts of interest.

Ethics committee approval: Ethical approval was granted by the "Bangladesh Agricultural University Ethical Committee" for all experiments involving human subjects and animals (fish). The procedures employed adhered to the established ethical standards. Furthermore, informed consent was obtained from all survey respondents, ensuring compliance with ethical principles governing research involving human participants.

Financial disclosure: The study did not receive any financial support from external sources.

Acknowledgments: The first author extends her heartfelt appreciation to the late Professor Dr. Mostafa Ali Reza Hossain, from the Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh, who was her PhD supervisor and recently passed away. His guidance and mentorship have been invaluable to the first author's research and academic journey, and she is forever grateful for his contributions to her success.

REFERENCES

Aziz, M. S. B. Hasan, N. A. Mondol, M. M. R. Alam, M. M. & Haque, M.M. (2021). Decline in fish species diversity due to climatic and anthropogenic factors in Hakaluki *Haor*, an ecologically critical wetland in northeast Bangladesh. *Heliyon*, 7(1), e05861.

- Banglapedia, National Encyclopedia of Bangladesh, Asiatic Society of Bangladesh, 1st edition February, 2004. Dhaka, Bangladesh. Available from URL: www.banglapedia.org..
- Chakraborty, B. K. (2011). Present status of biodiversity in Bogajan *Beel* in Northern Bangladesh. *J. Fish. Soc.* Taiwan, 38(4), 277-300.
- Craig, J.F. Halls, A.S. Barr, J.J.F& Bean, C.W. (2004). The Bangladesh floodplain fisheries. *Fisheries Research*, 66(2–3): 271-286. https://doi. org/10.1016/S0165-7836(03)00196-6
- Das, S. R., Pandit, D., Harun-Al-Rashid, A., Tasnim, N., & Kunda, M. (2022). Impacts of brush pile fishing on fish biodiversity: A case study of the Shari-Goyain River in Bangladesh. *Heliyon*, 8(7), e09903.
- Debnath, P., Hussain, M. A., & Nasren, S. (2020). Fish diversity of Halir Haor, Sunamganj, Bangladesh: A checklist. International Journal of Natural and Social Sciences, 7(4), 73-80.
- DoF 2018: National Fish Week 2018 Compendium (in Bengali). Department of Fisheries, Ministry of Fisheries and Livestock, Bangladesh.
- FAO. 2012. The state of world fisheries and aquaculture.Food and Agriculture Organization of the United Nations, Rome, Italy; 2012
- FAO 2022: Bangladesh, Text by Gias UA. Fisheries and Aquaculture Division, Rome.
- Hanif, M. A. Siddik, M. A. B. Chaklader, M. R. Mahmud, S. Nahar, A. Haque, M. S. & Munilkumar, S. (2015). Biodiversity and conservation of threatened freshwater fishes in Sandha River, South West Bangladesh. World Applied Sciences Journal, 33(9), 1497-1510.
- Hossain, M. Y., Rahman, M. M., Ali, M. M., Hossen, M. A., Nawer, F., Bahkali, A. H., ... & Ahmed, Z. F. (2016). Check list of fish species availability in Rupsha River, Bangladesh: Threat identification and recommendation for sustainable management.
- Iqbal, M. M. Nasren, S. H. A. M. I. M. A. Mamun, M. A. A. & Hossain, M. M. (2015). Fish assemblage including threatened species in Hakaluki Haor, Sylhet Bangladesh. Journal of agriculture in the topics, 30, 233- 246.
- Islam, M. J. & Sultana, M. A. (2016). Fishing gears used by the fishermen in wetlands of Chhatak, Sunamganj and sustainable utilization of fishery resources. *International Journal of Natural Sciences*, 6(2).
- Islam, M.R. Kunda, M. Pandit, D. & Harun-Al-Rashid, A. (2019). Assessment of the ichthyofaunal diversity in the Juri River of Sylhet district, Bangladesh. Archives of Agriculture and Environmental Science, 4(4): 488-496.
- IUCN. The international union for conservation of nature's red list of threatened species. Version 2017-1.
- IUCN Bangladesh. 2015. Red List of Bangladesh Volume 5: Freshwater Fishes. IUCN, International Union for Conservation of Nature, Bangladesh Country Office, Dhaka, Bangladesh, pp xvi+360
- Kamal, M. A. H. M. Kawsar, M. A. Pandit, D. Kunda, M. Tabassum, K. & Alam, M. T. (2022). Fish Biodiversity at Kawadighi *Haor* of Northeastern Bangladesh: Addressing Fish Diversity, Production and Conservation Status. Aquatic Sciences and Engineering, 37(3).
- Khan, M. A. R. Ali, M. M. Salam, M. A. Kunda, M. & Pandit, D. (2018). Impact of fish sanctuary on fish biodiversity and livelihoods of fishermen in Kolavanga *Beel* of Bangladesh. *World Journal of Fish* and Marine Sciences, 10(5), 46-54.
- Kunda, M. Ray, D. Pandit, D. & Harun-Al-Rashid, A. (2022). Establishment of a fish sanctuary for conserving indigenous fishes in the largest freshwater swamp forest of Bangladesh: A community-based management approach. *Heliyon*, 8(5), e09498.
- Kundu, G. K. Islam, M. M. Hasan, M. F. Saha, S. Mondal, G. Paul, B. & Mustafa, M. G. (2020). Patterns of fish community composition and

biodiversity in riverine fish sanctuaries in Bangladesh: Implications for hilsa shad conservation. *Ecology of Freshwater Fish*, *2*9(2), 364-376.

- Mondol, M. M. R., Hossain, M. Y., & Rahman, M. M. (2015). Check-list of Fish availability in the Karatoya River, Bangladesh. World Journal of Zoology, 10(1), 17-21.
- Nelson, J.S. (2006). Fishes of the World, fourth ed. John Wiley & Sons, p. 601.
- Pandit, D., Kunda, M., Ray, D., & Rashid, A. H. A. (2020). Availability and diversity of fish fauna in the Gurukchi River of Sylhet district in Bangladesh. *Journal of Sylhet Agricultural University*, 7(1), 1-14.
- Pandit, D. Saha, S. Kunda, M. & Harun-Al-Rashid, A. (2021). Indigenous freshwater ichthyofauna in the Dhanu River and surrounding wetlands of Bangladesh: species diversity, availability, and conservation perspectives. *Conservation*, 1(3), 241-257.
- Pandit, D. Shefat, S.H.T. & Kunda, M. (2023). Fish diversity decline threatens small-scale fisheries in the *haor* basin of Bangladesh. In: Islam, M. M. (ed.), Small in scale, big in contributions: Advancing knowledge of small-scale fisheries in Bangladesh. TBTI Global Publication Series. St. John's, NL, Canada.
- Parveen, S. & Faisal, I.M. (2002). People versus power: The Geopolitics of Kaptai Dam in Bangladesh. International Journal of Water Resources Development, 18:197–208, https://doi.org/10.1080/0790062
- Rahman, M. A. Khamari, A. Mandal, B. Ullah, M. R. Hossen, M. B. Alam, M.A. & Saha, N. (2019). Assessment of Fish Biodiversity in Basuakhali Beel under Terokhada Upazilla, Khulna, Bangladesh. Asian Journal of Research in Biosciences, 55-64.
- Rahman, M. A. Mandal, B. Khamari, A. Ullah, M. R. Sazedul, M. Hoque, M. & Chakma, S. (2019). Ichthyofaunal diversity of Basurabad *Beel* in regards with threat factors and conservation measures, Bangladesh. *Archives of Agriculture and Environmental Science*, 4(4), 478-487.
- Rahman, A. K. A. 2005. Freshwater fishes of Bangladesh. ^{2nd} ed. Zoological Society of Bangladesh, University of Dhaka, Dhaka, Bangladesh, 263 P.
- Siddique, M. A. B. Hussain, M. A. Flowra, F. A. & Alam, M. M. (2016). Assessment of fish fauna in relation to biodiversity indices of Chalan Beel, Bangladesh. International Journal of Aquatic Biology, 4(5), 345-352.
- Shamsuzzaman, M. M., Islam, M. M., Tania, N. J., Al-Mamun, M. A., Barman, P. P., & Xu, X. (2017). Fisheries resources of Bangladesh: Present status and future direction. Aquaculture and Fisheries, 2(4), 145-156.
- Sultana, M. A. Kunda, M. & Mazumder, S. K. (2019). Status and decline causes of fish diversity of Bhawal beel, Bangladesh. Malaysian Journal of Medical and Biological Research, 6(2), 93-100.
- Sultana, M. A. Mazumder, S. K. & Kunda, M. (2016). Fishing gears and crafts used in Payra River, Bangladesh. European Journal of Applied Sciences, 8(6), 337-346.
- Sultana, M. A. Mazumder, S. K. & Kunda, M. (2018). Diversity of fish fauna and fishing gears used in the River Banar, Mymensingh, Bangladesh. Bangladesh Journal of Fisheries, 30(2), 229-240.
- Sultana, M. A. Pandit, D. Barman, S. K. Tikadar, K. K. Tasnim, N., Fagun, I. A. & Kunda, M. (2022). A review of fish diversity, decline drivers, and management of the Tanguar *Haor* ecosystem: A globally recognized Ramsar site in Bangladesh. *Heliyon*, e11875.
- Talukder, M. R. Hussain, M. A. Kunda, M. Rashid, A. H. A. Pandit, D. & Sumon, T. A. (2021). Checklist of fish species in the Shari-Goyain River, Bangladesh: threats and conservation measures.
- Tasnim, N. Sultana, M. A. Tabassum, K. Islam, M. J. & Kunda, M. (2022). A review of the water quality indices of riverine ecosystem, Bangladesh. Archives of Agriculture and Environmental Science, 7(1), 104-113.
- Talwar, P. K. and A. G. Jhingran. (1991). Inland fishes of India and adjacent countries. Vol. 2. CRC Press, Rotterdam, Netherlands.