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Abstract
Let V be a countably generated right vector space over a field F and σ ∈ End(VF ) be a
shift operator. We show that there exist a unit u and an idempotent e in End(VF ) such
that 1− u, σ − u are units in End(VF ) and 1− e, σ − e are idempotents in End(VF ). We
also obtain that if D is a division ring D � Z2,Z3 and VD is a D-module, then for every
α ∈ End(VD) there exists a unit u ∈ End(VD) such that 1−u, α−u are units in End(VD).
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1. Introduction

Let R be an associative ring with unity. Given a map f : R → R, f is said to be unit-
additive if f(u + v) = f(u) + f(v), for all units u, v ∈ R. Moreover, if f(uv) = f(u)f(v)
for all units u, v ∈ R, then the ring R is called unit-homomorphic [6]. In [6], the authors
proved that each unit additive map of a semilocal ring R is additive if and only if either
R has no a homomorphic image isomorphic to Z2 orR/J(R) ∼= Z2, where J(R) denotes
the Jacobson radical and Zn is the ring of integers modulo n.

The study of rings satisfying the 2-sum property (i.e. rings such that each of their
elements is a sum of two units) was introduced by Wolfson [12] and Zelinsky [13]. They,
independently, proved that the endomorphism ring of a vector space V over a division
ring D satisfies the 2-sum property, except that dim(V ) = 1 and D = F2. A ring R is
said to have unit sum number n, if for any r ∈ R there exist units u1, · · · , un of R such
that r = u1 + · · · + un. According to [7], a ring R is said to satisfy the binary 2-sum
property if for any a, b ∈ R there exist units u1, u2, u3 of R such that a = u1 + u2 and
b = u1 + u3. Recall that a semilocal ring R has unit sum number 2 if and only if no
factor ring of R is isomorphic to F2 [4]. Recently, the author of [7] provides a similar
characterization of semilocal rings with the binary 2-sum property: a semilocal ring R
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satisfies the binary 2-sum property if and only if no factor ring of R is isomorphic to F2,
F3, or the 2×2 matrix ring M2(F2). They also obtained in [7, Corollary 19] that if R is an
exchange ring with primitive factors Artinian (e.g. a semilocal ring), then R satisfies the
binary 2-sum property if R satisfies the GoodearlMenal property (two elements a, b ∈ R
are said to satisfy the Goodearl-Menal condition, in case there exists a unit u in R such
that a−u, u−1 is a unit. A ring R is said to satisfy the Gooodearl-Menal if every elements
a, b ∈ R satisfies this property [5], [8].

Let V be a countably generated right vector space over a division ring D. In 2010,
Chen [2] generalized a result of Zelinsky [13] and proved that for any endomorphism f of
V there exists an automorphism g of V with f + g and f − g−1 both automorphisms of V
if D 6= Z2,Z3. We also notice that this result is extended to an Artinian right R-module
over a semilocal ring R that contains 1/2 and 1/3 [11]. In [10, Theorem], Nicholson and
Varadarjan proved that every countable linear transformation over a division ring is clean
(every element of a ring is a sum of an idempotent and a unit [9]). Let V be a countably
generated vector space over a division ring D such that |D| 6= 2, 3, and let EndD(V )
denote the ring of linear transformations on V . Chen [3] also obtained two interesting
decompositions in EndD(V ): (1) For any f ∈ EndD(V ), there exists an automorphism g
on V such that f −g and f −g−1 are both automorphisms on V . Thus, EndD(V ) satisfies
a special case of the Goodearl-Menal condition. (2) For any f ∈ EndD(V ), there exists
an automorphism g on V such that f2− g2 is an automorphism on V . In [1], Camillo and
Simon also applied the Nicholson-Varadarajan theorem on clean linear transformations
and they used the tool: the shift operator. For a countably infinite dimensional right
vector space VD, a linear transformation f ∈ End(VD) is called a shift operator if there
exists a basis {v1, v2, · · · , vn, · · · } of V such that f(vi) = vi+1 for all i.

Vidinli Hüseyin Tevfik Pasha (1832-1901), also widely known as General Hussein in
America, was the most important mathematician, lecturer, scientist, bureaucrat and mem-
ber of army of the late modern period of the Ottoman Empire. Even for today his book
Linear Algebra (1882) is a basic source for the related area. His notion was originated
from a perspective to generalize the notion of multiplication to lines in the two and three
dimensional case. Note that the matrix representation of the shift operator f over basis
{vi}i is of the form

f =



0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

... . . .


.

The main purpose of this study is to obtain the following new results on sum decom-
positions using a new tool, namely idempotent additive maps taking idempotents instead
of units in a unit additive map:

(1) Let V be a countably generated right vector space over a field F and σ ∈ S =
End(VF ) be a shift operator. Then there exist a unit u ∈ S and an idempotent
e ∈ S such that 1 − u, σ − u are units in s and 1 − e, σ − e are idempotents in s.
(Theorem 2.4);

(2) If D is a division ring and D � Z2,Z3, then there exists a unit u ∈ End(VD) for
which 1− u, α− u ∈ U(End(VD)) for any α ∈ End(VD) (Theorem 2.9);

(3) If D is a division ring and D � Z2,Z3, and f is an unit additive map in S :=
End(VD) such that f(0) = 0, then f is additive (Corollary 2.10).
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2. Results
We will denote by U(R) the set of all units and by Id(R) a set of all idempotents of a

ring R.

Definition 2.1. Let R be a ring. A map σ : R → R is called an (a) idempotent (unit)
additive map if σ is additive on idempotents (units) of R, i.e

σ(a + b) = σ(a) + σ(b),

for every idempotents (units) a, b ∈ R.

For convenience, we fix a notation: for a, b ∈ R, we write

a ! b (or a
u
! b, to emphasize the element u) if a−u, b−u ∈ U(R) for some u ∈ U(R),

a 
 b (or a
e

 b to emphasize the element e) if a− e, b− e ∈ Id(R) for some e ∈ Id(R),

a ←→ b (or a
u←→ b to emphasize the unit u), if there exists u ∈ U(R) such that

a− u, b− u−1 ∈ U(R) (Goodearl-Menal condition [5]).
We list some properties of notations in the following observations.

Lemma 2.2. The followings hold for a ring R and elements a, b ∈ R, u, x, y ∈ U(R).
(1) Let σ be a unit-additive map of R. If −a ! u, then σ(a + u) = σ(a) + σ(u).
(2) If 1 ! c for all c ∈ R, then every unit-additive map of R is additive.
(3) Let σ be an automorphism or anti-automorphism of R. Then:

(a) a
u
! b iff σ(a) σ(u)

! σ(b).
(b) a

u
! b iff xay

xuy
! xby.

(4) (a) 1 u
! a iff 1 u−1

←→ a.
(b) 1 ! x for all x ∈ R iff v ! x for all x ∈ R and all v ∈ U(R).
(c) 1←→ x for all x ∈ R iff v ←→ x for all x ∈ R and all v ∈ U(R).
(d) v ! x for all x ∈ R and all v ∈ U(R) iff v ←→ x for all x ∈ R and all

v ∈ U(R).

Proof. (1) and (2) See [6, Lemmas 2.3 and 2.4].
(3) and (4) See [7, Lemmas 2.7 and 2.8]. �

Lemma 2.3. The following conditions hold for a ring R and r ∈ R.
(1) Let σ be an idempotent-additive map of R and e ∈ Id(R). If −r 
 e, then

σ(r + e) = σ(r) + σ(e).
(2) If 1 
 x for all x ∈ R, then every idempotent-additive map of R is additive.
(3) r 
 1 if and only if there exist e, f ∈ Id(R) such that r = e + f ,
(4) Let σ be a ring automorphisms of R. Then r 
 1 if and only if σ(r) 
 1

Proof. (1) and (2) The proofs are similar to the proofs of Lemma 2.2 (1) and (2).
(3) If there exists e ∈ Id(R) such that r−e, 1−e ∈ Id(R), then it is enough to put f := r−e.
The converse follow from the fact that 1− e ∈ Id(R) for an arbitrary idempotent e.
(4) This is clear since σ(e) ∈ Id(R) for each e ∈ Id(R). �

Now we are ready to prove our first main theorem.

Theorem 2.4. Let V be a countably generated right vector space over a field F and
σ ∈ S = End(VF ) be a shift operator. Then

(1) 1 
 σ,
(2) 1 ! σ.
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Proof. (1) Let E1 :=
(

0 0
1 1

)
, E2 :=

(
1 0
1 0

)
, 0i×j be a zero matrix of type i × j and

(ui)i<ω be a basis of V . Define an infinite block-diagonal matrices

B =


E1 02×2 02×2 02×2 . . .

02×2 E1 02×2 02×2 . . .
02×2 02×2 E1 02×2 . . .
02×2 02×2 02×2 E1 . . .

...
...

...
... . . .

 and C =


01×1 01×2 01×2 01×2 01×2 . . .
02×1 E2 02×2 02×2 02×2 . . .
02×1 02×2 E2 02×2 02×2 . . .
02×1 02×2 02×2 E2 02×2 . . .

...
...

...
...

... . . .

 ,

and endomorphisms e, f ∈ End(V ) such that B is the matrix of e and C is the matrix of
f with respect to the basis (ui)i<ω, i.e.

e(u2i−1) = e(u2i) = u2i,

f(u2i−1) = 0, f(u2i) = u2i + u2i+1

for each i ≥ 1. Then

A =



0 0 0 0 0 . . .
1 2 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 2 0 . . .
0 0 0 1 0 . . .
...

...
...

... . . .


.

is the matrix of e+f and it is easy to see that e, f ∈ Id(End(V )) as E2
1 = E1 and E2

2 = E2.
Let us denote g := e + f and we will construct a basis (vi)i<ω which witnesses that g is

a shift operator, i.e. that g(vi) = vi+1. First, put v1 = u1 and v2 = u2. Then

Span(v1, v2) = Span(u1, u2),

g(v1) = v2

and
g(v2) ∈ Span(v1, v2, u3) \ Span(v1, v2).

So we have v1, . . . , vi such that

Span(v1, . . . , vi) = Span(u1, . . . , ui),

g(vi−1) = vi

and
g(vi) ∈ Span(v1, . . . , vi, ui+1) \ Span(v1, . . . , vi).

Define vi+1 := g(vi). By the induction hypotheses v1, . . . , vi+1 is linearly independent,
which implies

Span(v1, . . . , vi+1) = Span(u1, . . . , ui+1).
Hence, it is clear from the matrix A that g(vi+1) ∈ Span(v1, . . . , vi+1, ui+2)\Span(v1, . . . , vi+1).

Since (vi)i<ω is a basis satisfying [e + f ](vi) = vi+1 for each i, we have already obtained
that e + f is a shift operator, which implies 1 
 e + f by Lemma 2.3(3). As there exists
an invertible operator, say a ∈ End(V ), such that e + f = a−1σa, the assertion follows
from Lemma 2.3(4).
(2) Denote by (vi)i<ω a basis of V such that σ(vi) = vi+1. First, suppose that characteristic

of F is not 2. Let U1 :=
(
−1 0
1 −1

)
, U2 :=

(
1 0
1 1

)
and U3 :=

(
2 0
−1 2

)
. Remark that
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all these matrices are invertible. We denote by u an operator such that its matrix with
respect to the basis (vi)i<ω is

[u](vi)


U1 0 0 0 . . .
0 U1 0 0 . . .
0 0 U1 0 . . .
...

...
...

... . . .

 .

Now we easily compute matrices

[1− u](vi) =


U3 0 0 0 . . .
0 U3 0 0 . . .
0 0 U3 0 . . .
...

...
...

... . . .

 and [σ − u](vi) =


11×1 0 0 0 . . .

0 U2 0 0 . . .
0 0 U2 0 . . .
...

...
...

... . . .

 .

Since all these matrices are invertible, we can see that u, 1− u, σ − u ∈ U(S).
Now, let 1 + 1 = 0 and consider the matrix

A =


U 0 0 0 . . .
0 U 0 0 . . .
0 0 U 0 . . .
0 0 0 U . . .
...

...
...

... . . .

 ,

where U =

0 1 0
0 1 1
1 0 0

 is an invertible matrix with the inverse U−1 =

0 0 1
1 0 0
1 1 0

. Clearly,

the matrices A and A + I are invertible with the inverses

A−1 =


U−1 0 0 0 . . .

0 U−1 0 0 . . .
0 0 U−1 0 . . .
0 0 0 U−1 . . .
...

...
...

... . . .


and

(A + I)−1 =


(U + I3)−1 0 0 0 . . .

0 (U + I3)−1 0 0 . . .
0 0 (U + I3)−1 0 . . .
0 0 0 (U + I3)−1 . . .
...

...
...

... . . .

 ,

where (U + I3)−1 =

0 1 1
1 1 1
0 1 0

 . Let A be the matrix of an operator u with respect to the

basis (vi)i<ω. Hence u and 1 + u are invertible operators.
Finally, the operator u + σ is invertible since it has a matrix with respect to (vi)i<ω

B 0 0 0 . . .
E13 B 0 0 . . .
0 E13 B 0 . . .
0 0 E13 B . . .
...

...
...

... . . .

 ,
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with the inverse 
B−1 0 0 0 . . .
C B−1 0 0 . . .
0 C B−1 0 . . .
0 0 C B−1 . . .
...

...
...

... . . .


where B =

0 1 0
1 1 1
1 1 0

, B−1 =

1 0 1
1 0 0
0 0 1

, C =

0 1 1
0 1 1
0 0 0

 and E13 =

0 0 1
0 0 0
0 0 0

. �

GLn(D) denotes the n-dimensional general linear group over a division ring D and
Mn(D) denotes the ring of all n× n matrices over D with an identity In.

Recall that the matrices a and b are equivalent if there exists a regular matrix p such
that a = p−1bp.
Lemma 2.5. Let D be a division ring of characteristic different from 2, n ∈ N and
b ∈Mn(D). Then the following conditions are equivalent.

(1) b 
 In

(2) b is equivalent to a block matrix


2Ir a12 a13 0
0 Is a23 0
0 a32 It 0
0 0 0 0

 ∈Mn(D) where Ir, Is, It are

identity matrices, and ai,j and 0 are matrices.
Proof. Recall that b 
 In if and only if there exist e, f ∈ Id(Mn(D)) such that b = e + f
by Lemma 2.3(3). Since

2Ir a12 a13 0
0 Is a23 0
0 a32 It 0
0 0 0 0

 =


Ir a12 0 0
0 0 0 0
0 a32 It 0
0 0 0 0

+


Ir 0 a13 0
0 Is a23 0
0 0 0 0
0 0 0 0


where both the matrices on the right side are idempotents, we get that (2)⇒ (1) holds.

Let b = e + f for idempotent matrices e, f and let us identify all matrices with linear
operator on Dn given by the matrix multiplication. Let us denote by B the basis of
im(e) ∩ im(f) which could be completed to bases of im(e) and im(f) by E and F , i.e.
B ∪E is a basis of im(e) and B ∪F is a basis of im(f). Since e and f are idempotents, we
get e(u) = u for each u ∈ B∪E and f(u) = u for each u ∈ B∪E. Hence e(v) ∈ Span(B∪E)
and f(v) ∈ Span(B ∪ F ) for all v ∈ Dn.

Finally let K be a basis of ker(b) and let k ∈ ker(b). Then 0 = b(k) = e(k)+f(k) and so
e(k) = f(−k) ∈ im(e) ∩ im(f) = Span(B). Hence k = e(k) = f(−k) = −k which implies
that k = 0 and ker(b) ⊆ ker(e) ∩ ker(f). It means that the matrix of operator b = e + f
with respect to the basis B ∪ E ∪ F ∪K is of the form

Ir a12 0 0
0 0 0 0
0 a32 It 0
0 0 0 0

+


Ir 0 a13 0
0 Is a23 0
0 0 0 0
0 0 0 0

 =


2Ir a12 a13 0
0 Is a23 0
0 a32 It 0
0 0 0 0


which is equivalent to the matrix b. �

Theorem 2.6. Let D be a division ring.
(1) Let the characteristic of D be different from 2 and b ∈M2(D). Then b 
 I2 if and

only if b is equivalent to one of the matrices:(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
1 c
d 1

)
,

(
2 c
0 1

)
,

(
2 0
0 2

)
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for some c, d ∈ D.
(2) If D � Z2,Z3 and n ∈ N, then

(i) for any a, b ∈Mn(D), there exists c ∈ GLn(D) such that b
c

! a.
(ii) b

c
! In.

Proof. (1) This follows from Lemma 2.5.
(2) Assuming D � Z2,Z3 implies that |D| ≥ 4. Let x, y ∈ D. We have the following three
cases.

If x = 0, then we choose a nonzero element u ∈ D such that u 6= y. Hence y − u 6= 0.
If y = 0, then we choose a nonzero element u ∈ D such that u 6= x. Hence x− u 6= 0.
If x 6= and y 6= 0, then we choose a nonzero element u ∈ D such that u 6= x and u 6= y.

As a result we obtain that x
u
! u.

Let a =
(

a11 a12
a21 a22

)
∈ Mn(D) and b =

(
b11 b12
b21 b22

)
∈ Mn(D), where a11, b11 ∈ D,

a12, b12 ∈ M1×(n−1)(D), a21, b21 ∈ M(n−1)×1(D) and a22, b22 ∈ M(n−1)×(n−1)(D). Note
that there exists 0 6= x ∈ D such that a11 − x = u1 6= 0 and b11 − x = u2 6= 0. Since a22 −
a21u−1

1 a12 ∈ M(n−1)(D) and b22 − b21u−1
1 b12 ∈ M(n−1)(D), we can obtain y ∈ GLn−1(D)

such that a22 − a21u−1
1 a12 − y = v1 ∈ GLn−1(D) and b22 − b21u−1

1 b12 − y ∈ GLn−1(D).
They imply that

a− diag(x, y) =
(

u1 a12
a21 v1 + a21u−1

1 a12

)
and

b− diag(x, y) =
(

u2 b12
b21 v2 + b21u−1

1 b12

)
.

Since (
u1 a12
a21 v1 + a21u−1

1 a12

)
=
(

1 0
a21u−1

1 1

)(
u1 a12
0 v1

)
and (

u2 b12
b21 v2 + b21u−1

1 b12

)
=
(

1 0
b21u−1

2 1

)(
u2 b12
0 v2

)
,

we get
(

u1 a12
a21 v1 + a21u−1

1 a12

)
,

(
u2 b12
b21 v2 + b21u−1

1 b12

)
∈ GLn(D) as desired. �

For the last main theorem we need the following a series of lemmas.

Lemma 2.7. Let D be a division ring and α ∈ End(VD) such that VD is spanned by
{y, α(y), α2(y), · · · } for some y ∈ V . If D � Z2,Z3, then

(1) 1 ! α.
(2) If VD is infinitely generated, then 1 
 α.

Proof. (1) We may assume that VD 6= 0. If αn(y) /∈ yD + α(y)D + · · ·+ αn−1(y)D for all
n ≥ 1, then {y, α(y), α2(y), · · · } is a basis of VD. Since α is a shift operator with respect to
the basis {y, α(y), α2(y), · · · }, we get 1 ! α by Theorem 2.4(2). Now suppose that there
exists n ∈ N such that αn(y) /∈ yD+α(y)D+· · ·+αn−1(y)D. If n is minimal with respect to
this property, then {y, α(y), α2(y), · · · } forms a basis for VD. Hence EndD(VD) ∼= Mn(D).
By Lemma 2.3(2), we obtain that 1 ! α.
(2) This follows from Theorem 2.4(1) using the arguments of (1). �

Lemma 2.8. Let D be a division ring such that D � Z2,Z3, α ∈ End(VD) and U be
an α-invariant subspace of VD. Assume that there exists a vector y ∈ U \ V such that
V = U +

∑
i≥0 αi(y)D. If the restriction α|U satisfies 1 ! α|U , then 1 ! α
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Proof. Let V = M ⊕ U where M is a subspace which contains y. Define
α̃ : V/U → V/U

v → α(v)
(see [10, Lemma 4]).

Clearly,
αn(y) = α̃n(v)

and there exists a D-subisomorphism θ0 : V/U →M given by θ0(v) = θ(v) by [10, Lemma
4] where θ is an idempotent in EndD(V ) satisfying θ(V ) = M and Ker(θ) = U . By
[10, Lemma 4], we have the endomorphism ring of M as:

β := θ0α̃θ−1
0 : M → V/U → V/U →M.

By the hypothesis, {y, α(Y ), · · · } spans V/U . Hence {y, α̃(y), · · · } spans V/U since
αn(y) = α̃n(v). Now it is easy to see that {θ0[y], θ0[α̃(y)], · · · } spans M . By Lemma
2.7, we get β ! 1. Then β− v1 = a1 and 1− v1 = b1 for some units v1, a1, b1 of End(M).
By hypothesis, 1 ! α|U , we have α|U − v2 = a2 and 1− v2 = b2 for some units v2, a2, b2
of End(M). Since V = M ⊕ U , we can define

v∗(v) = v∗(m + u) = v1(m) + [α(m)− β(m) + v2(u)].
v∗ is an automorphism of V : Since v∗(m + u) = 0 implies v1(m) = 0 and [α(m)−β(m)] +
v2(u) = 0, whence m = u = 0, we get v∗ is monic. As u = v2(u0) = v∗(0 + u0) for some
u0 ∈ U , we obtain U ⊆ Im(v∗). If m ∈ M , we write m = v1(m1) for m1 ∈ M , then
α(m1)−β(m1) = −v2(u0). Then v∗(m1 + u0) = v1(m1) + [α(m1)−β(m1) + v2(u0)] which
implies that M ⊆ Im(v∗). Hence v∗ is epic.
α− v∗ is an automorphism: Firstly,

(α− v∗)(m + u) = α(m + u)− v∗(m + u)
= α(m) + α(u)− v1(m)− [α(m)− β(m)− v2(u)]
= α|u(u)− v2(u)− v1(m) + β(m)
= b2(u) + b1(m).

Now, by a similar technic of previous proof, we can obtain that α− v∗ is monic and epic.
1− v∗ is an automorphism: Firstly,

(1− v∗)(m + u) = 1(m + u)− v∗(m + u)
= α(m) + α(u)− v1(m)− [α(m)− β(m)− v2(u)]
= 1(m) + 1(u)− v1(m)− [α(m)− β(m) + v2(u)]
= 1(m)− v1(m) + 1(u)− v2(u) + β(m)− α(m)
= b1(m) + [b2(u) + β(m)− α(m)].

Finally, the same argument as for α− v∗ shows that 1− v∗ is monic and epic. �

Theorem 2.9. Let D be a division ring and D � Z2,Z3. Then 1 ! α for any α ∈
End(VD).

Proof. Fix α ∈ End(VD). Define

χ = {(U, v) : UD ⊆ V is a α− invariant and α|u
v
! 1}.

Note that (0, 0) ∈ χ. Now we define (U, v) ≤ (U ′, v′) by U ⊆ U ′ and v′
|u = v is a partial

order of χ. By Zorn’s Lemma, there exists a maximal element, say (U, v) in χ.
Assume U 6= V . Then, take y ∈ V \ U and let K :=

∑
i≥0 αi(y)D. Hence we write

V0 = U + K. Clearly, V0 and K are α-invariant subspaces, α ∈ End(V0) and α|U
v
! 1

because (U, v) ∈ χ. By Lemma 2.8, we get α ! 1 which contradicts the maximality of
(U, v) ∈ χ. �
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Corollary 2.10. Let D be a division ring different from Z2 and Z3, and VD a countably
generated right vector space over D. If f is an unit additive map in S := End(VD) such
that f(0) = 0, then f is additive.

Proof. Observe that f(0) = 0 so f(−a) = −f(a) for every a ∈ U(S).
Let α, β ∈ S. By Theorem , there exists invertible u ∈ S such that 1− u, α − u, β + u

are invertible. Hence,
f(α + β) = f(α− 1) + f(1 + β)

= f(α− u + u− 1) + f(1− u + u + β)
= f(α− u) + f(u− 1) + f(1− u) + f(u + β)
= f(α− u) + f(u)− f(1) + f(1) + f(−u) + f(u + β)
= f(α− u + u) + f(−u + u + β)
= f(α) + f(β),

as desired. �
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