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Abstract

Let V be a countably generated right vector space over a field F and o € End(Vy) be a
shift operator. We show that there exist a unit v and an idempotent e in End(Vr) such
that 1 — u,o — u are units in End(Vr) and 1 —e,0 — e are idempotents in End(Vg). We
also obtain that if D is a division ring D % Zo,Z3 and Vp is a D-module, then for every
a € End(Vp) there exists a unit u € End(Vp) such that 1 —u, o —w are units in End(Vp).
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1. Introduction

Let R be an associative ring with unity. Given a map f: R — R, f is said to be unit-
additive if f(u+v) = f(u) + f(v), for all units u,v € R. Moreover, if f(uv) = f(u)f(v)
for all units u,v € R, then the ring R is called unit-homomorphic [6]. In [6], the authors
proved that each unit additive map of a semilocal ring R is additive if and only if either
R has no a homomorphic image isomorphic to Zg orR/J(R) = Zs, where J(R) denotes
the Jacobson radical and Z,, is the ring of integers modulo n.

The study of rings satisfying the 2-sum property (i.e. rings such that each of their
elements is a sum of two units) was introduced by Wolfson [12] and Zelinsky [13]. They,
independently, proved that the endomorphism ring of a vector space V over a division
ring D satisfies the 2-sum property, except that dim(V) = 1 and D = Fy. A ring R is
said to have unit sum number n, if for any r € R there exist units uq,--- ,u, of R such
that » = up + -+ + up,. According to [7], a ring R is said to satisfy the binary 2-sum
property if for any a,b € R there exist units uj,uo,u3 of R such that a = u; + us and
b = u; + us. Recall that a semilocal ring R has unit sum number 2 if and only if no
factor ring of R is isomorphic to Fy [4]. Recently, the author of [7] provides a similar
characterization of semilocal rings with the binary 2-sum property: a semilocal ring R
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satisfies the binary 2-sum property if and only if no factor ring of R is isomorphic to Fo,
F3, or the 2 x 2 matrix ring Ma(F2). They also obtained in [7, Corollary 19] that if R is an
exchange ring with primitive factors Artinian (e.g. a semilocal ring), then R satisfies the
binary 2-sum property if R satisfies the GoodearlMenal property (two elements a,b € R
are said to satisfy the Goodearl-Menal condition, in case there exists a unit v in R such
that @ —u,u ! is a unit. A ring R is said to satisfy the Gooodearl-Menal if every elements
a,b € R satisfies this property [5], [8].

Let V be a countably generated right vector space over a division ring D. In 2010,
Chen [2] generalized a result of Zelinsky [13] and proved that for any endomorphism f of
V there exists an automorphism g of V with f + g and f — g~! both automorphisms of V'
if D # Zo,Zs3. We also notice that this result is extended to an Artinian right R-module
over a semilocal ring R that contains 1/2 and 1/3 [11]. In [10, Theorem], Nicholson and
Varadarjan proved that every countable linear transformation over a division ring is clean
(every element of a ring is a sum of an idempotent and a unit [9]). Let V' be a countably
generated vector space over a division ring D such that |D| # 2,3, and let Endp(V)
denote the ring of linear transformations on V. Chen [3] also obtained two interesting
decompositions in Endp(V): (1) For any f € Endp(V), there exists an automorphism g
on V such that f —g and f —g~! are both automorphisms on V. Thus, Endp (V) satisfies
a special case of the Goodearl-Menal condition. (2) For any f € Endp(V), there exists
an automorphism g on V such that f? — g2 is an automorphism on V. In [1], Camillo and
Simon also applied the Nicholson-Varadarajan theorem on clean linear transformations
and they used the tool: the shift operator. For a countably infinite dimensional right
vector space Vp, a linear transformation f € End(Vp) is called a shift operator if there
exists a basis {v1,va, -+ ,vp, -+ } of V such that f(v;) = v;41 for all i.

Vidinli Hiiseyin Tevfik Pasha (1832-1901), also widely known as General Hussein in
America, was the most important mathematician, lecturer, scientist, bureaucrat and mem-
ber of army of the late modern period of the Ottoman Empire. Even for today his book
Linear Algebra (1882) is a basic source for the related area. His notion was originated
from a perspective to generalize the notion of multiplication to lines in the two and three
dimensional case. Note that the matrix representation of the shift operator f over basis
{v;}; is of the form

OO OO
OO = OO
O = O OO
O O OO

The main purpose of this study is to obtain the following new results on sum decom-
positions using a new tool, namely idempotent additive maps taking idempotents instead
of units in a unit additive map:

(1) Let V be a countably generated right vector space over a field F and 0 € S =
End(VF) be a shift operator. Then there exist a unit u € S and an idempotent
e € S such that 1 — u,0 — u are units in s and 1 — e, 0 — e are idempotents in s.
(Theorem 2.4);

(2) If D is a division ring and D 2 Zs, Zs, then there exists a unit v € End(Vp) for
which 1 —u,a —u € U(End(Vp)) for any a € End(Vp) (Theorem 2.9);

(3) If D is a division ring and D 2 Zg,Zs, and f is an unit additive map in S :=
End(Vp) such that f(0) =0, then f is additive (Corollary 2.10).
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2. Results

We will denote by U(R) the set of all units and by Id(R) a set of all idempotents of a
ring R.

Definition 2.1. Let R be a ring. A map 0 : R — R is called an (a) idempotent (unit)
additive map if o is additive on idempotents (units) of R, i.e

ola+b) =o(a)+ o(b),
for every idempotents (units) a,b € R.

For convenience, we fix a notation: for a,b € R, we write

a «~ b (or @ «~ b, to emphasize the element ) if a—u,b—u € U(R) for some u € U(R),

a="(ora = b to emphasize the element e)ifa—e,b—e € Id(R) for some e € Id(R),

a +— b (or a <+ b to emphasize the unit u), if there exists u € U(R) such that
a—u,b—u"! € U(R) (Goodearl-Menal condition [5]).

We list some properties of notations in the following observations.

Lemma 2.2. The followings hold for a ring R and elements a,b € R, u,z,y € U(R).
(1) Let o be a unit-additive map of R. If —a e~ u, then o(a +u) = o(a) + o(u).
(2) If 1 «w ¢ for all ¢ € R, then every unit-additive map of R is additive.

(3) Let o be an automorphism or anti-automorphism of R. Then:
o (u)

(a) a «% b iff o(a) « o(b).

b) a “ b iff zay “4 zby.

)1 aiff 145 .

) Lewx forallz € R iff v e x for all x € R and all v € U(R).

) 1<—x forallx € Riff v<— x for allz € R and all v € U(R).

) v e x forallz € R and all v € U(R) iff v <— x for all x € R and all
veU(R).

Proof. (1) and (2) See [6, Lemmas 2.3 and 2.4].
(3) and (4) See [7, Lemmas 2.7 and 2.8]. O

Lemma 2.3. The following conditions hold for a ring R and r € R.

(1) Let o be an idempotent-additive map of R and e € Id(R). If —r = e, then
o(r+e)=o(r)+o(e).

(2) If 1 = x for all x € R, then every idempotent-additive map of R is additive.

(3) =1 if and only if there exist e, f € Id(R) such thatr =e + f,

(4) Let o be a ring automorphisms of R. Then r =1 if and only if o(r) = 1

Proof. (1) and (2) The proofs are similar to the proofs of Lemma 2.2 (1) and (2).

(3) If there exists e € Id(R) such that r—e, 1—e € Id(R), then it is enough to put f := r—e.
The converse follow from the fact that 1 — e € Id(R) for an arbitrary idempotent e.

(4) This is clear since o(e) € Id(R) for each e € Id(R). O

Now we are ready to prove our first main theorem.
Theorem 2.4. Let V be a countably generated right vector space over a field F' and
o € 8= End(Vp) be a shift operator. Then

(1) 1=o0,
(2) 1 e o.
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Proof. (1) Let E; := (? ?), Ey = G 8), 0ixj be a zero matrix of type 7 x j and

(u;)i<w be a basis of V. Define an infinite block-diagonal matrices

E1 0Oax2 02y O2x2 ... O1x1 O1x2 O1x2 Oi1x2 O1x2
O2x2  E1 O2x2 O2x2 ... O2x1 Ea  0O2x2 O2x2 O2x2
B=|02x2 0O2x2 E1 O2x2 ...| and @ = |02x1 O2x2  E2 0O2x2 Oo2xo 7

O2x2 Oy O2x2  E1 ... O2x1 O2x2 O2x2  FEo  0O2x2

and endomorphisms e, f € End(V') such that B is the matrix of e and C' is the matrix of
f with respect to the basis (u;)i<y, i.€.

e(ugi—1) = e(ug;) = ugi,

f(ugi—1) =0, f(ugi) = ugi + ugit1
for each ¢ > 1. Then

0000 O
1200 0
0100 0

A=lo0 012 o0
00071 0

is the matrix of e+ f and it is easy to see that e, f € Id(End(V)) as E? = E; and E3 = Es.
Let us denote g := e + f and we will construct a basis (v;)i<, which witnesses that g is
a shift operator, i.e. that g(v;) = v;11. First, put v1 = vy and vy = ug. Then

Span(vy,vy) = Span(ug, ug),

g(v1) = vz
and
g(v2) € Span(v1,v2,us3) \ Span(vy, va).
So we have v1,...,v; such that
Span(vy,...,v;) = Span(ug, ..., u;),
g(vi-1) = v;
and

g(vi) € Span(vy, ..., v, ui+1) \ Span(vi,. .., v;).
Define v; 41 := g(v;). By the induction hypotheses vy,...,v;41 is linearly independent,
which implies
Span(vi, ..., vi+1) = Span(ui, . . ., Uit+1)-

Hence, it is clear from the matrix A that g(v;y1) € Span(vy,...,vi11,ui12)\Span(vy, ..., vir1).

Since (v;)i<w is a basis satisfying [e + f](v;) = v;41 for each i, we have already obtained
that e + f is a shift operator, which implies 1 = e + f by Lemma 2.3(3). As there exists
an invertible operator, say a € End(V), such that e + f = a~'oa, the assertion follows
from Lemma 2.3(4).
(2) Denote by (v;)i<., a basis of V such that o(v;) = v;41. First, suppose that characteristic

of I'is not 2. Let U; := <_11 _01), Uy = G (1]> and Us := (_21 g) Remark that
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all these matrices are invertible. We denote by u an operator such that its matrix with
respect to the basis (v;)i<y is

Uy 0 0 0
0 U; 0 0
ey o o v 0
Now we easily compute matrices
Us 0 0 0 ... lix1i 0 0 O
0 U3 0 0 ... 0 Uy 0 0

L—uwy=|0 0 wvs 0 ...| and [o—uwy=] 0 0 U, 0

Since all these matrices are invertible, we can see that u,1 —u,o0 —u € U(S5).
Now, let 1 +1 = 0 and consider the matrix

U 0 0 0
0 U 0 0
A=|0 O U O
00 0 U ’
010 0 01
where U = (O 1 1) is an invertible matrix with the inverse U~! = (1 0 O). Clearly,
1 00 110
the matrices A and A + [ are invertible with the inverses
vt 0o 0 0
o Ut o0 0
A-1=] 0 o Ut o
0 o o Ut
and
(U + I3)~! 0 0 0
0 (U + I3)~! 0 0
(A+1)" = 0 0 (U+ ;)71 0 ,
0 0 0 U+ I3)7 !
011
where (U + I3)~! = (1 1 1) . Let A be the matrix of an operator v with respect to the
010

basis (v;)i<w. Hence u and 1+ u are invertible operators.
Finally, the operator u + o is invertible since it has a matrix with respect to (v;)i<w

B 0 0 0
Eis B 0 0
0 Ei3 B 0
B )

0 0 FEi3
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with the inverse

0 C Bl o0
0 0 C B!

010 101 01 1 00 1
where B= (1 1 1|,Bt=(1 0 0|,c={0 1 1|andE;3={0 0 0). O
110 00 1 000 000

GL,(D) denotes the n-dimensional general linear group over a division ring D and
M., (D) denotes the ring of all n x n matrices over D with an identity I,,.

Recall that the matrices a and b are equivalent if there exists a regular matrix p such
that a = p~'bp.

Lemma 2.5. Let D be a division ring of characteristic different from 2, n € N and
b € M, (D). Then the following conditions are equivalent.

(1) b=1,
2I, a2 a3 O

(2) b is equivalent to a block matrix 0 aI;Q a[2t3 8 € M,,(D) where I, I, I; are
0 0 0 0

identity matrices, and a; j and 0 are matrices.

Proof. Recall that b = I,, if and only if there exist e, f € Id(M,,(D)) such that b =e+ f
by Lemma 2.3(3). Since

2IT a12 ais 0 [r a9 0 0 Ir 0 a3 0
0 IS a3 0 . 0 0 0 0 0 [S a3 0
0 ap L, 0] =|0 ap L 0] T {0 0 0 0
0 0 0 0 0O 0 0 0 0O 0 0 O

where both the matrices on the right side are idempotents, we get that (2) = (1) holds.

Let b = e + f for idempotent matrices e, f and let us identify all matrices with linear
operator on D™ given by the matrix multiplication. Let us denote by B the basis of
im(e) N im(f) which could be completed to bases of im(e) and im(f) by E and F, i.e.
BUE is a basis of im(e) and BUF is a basis of im(f). Since e and f are idempotents, we
get e(u) = u for each u € BUE and f(u) = u for each u € BUE. Hence e(v) € Span(BUE)
and f(v) € Span(B U F) for all v € D™.

Finally let K be a basis of ker(b) and let k € ker(b). Then 0 = b(k) = e(k)+ f(k) and so
e(k) = f(=k) € im(e) Nim(f) = Span(B). Hence k = e(k) = f(—k) = —k which implies
that & = 0 and ker(b) C ker(e) Nker(f). It means that the matrix of operator b = e + f
with respect to the basis BU E U F U K is of the form

Ir ai19 0 0 Ir 0 ais 0 2L~ a12 ai3 0
0 0 0 0 n 0 Is a3 O [ O Is axs O
0 as9 It 0 0 0 0 0 B 0 aso It 0
0 0 0 0 0 0 0 O 0 0 0 0
which is equivalent to the matrix b. ]

Theorem 2.6. Let D be a division ring.

(1) Let the characteristic of D be different from 2 and b € My(D). Then b= Iy if and
only if b is equivalent to one of the matrices:

00 6o 65696
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for some ¢,d € D.
(2) If D £ Zo,7Z3 and n € N, then
(i) for any a,b € M, (D), there exists ¢ € GLy,(D) such that b «% a.
(ii) b e~ I,,.

Proof. (1) This follows from Lemma 2.5.
(2) Assuming D 2 Zo, Z3 implies that |D| > 4. Let z,y € D. We have the following three
cases.
If x = 0, then we choose a nonzero element u € D such that u # y. Hence y — u # 0.
If y = 0, then we choose a nonzero element v € D such that u # x. Hence x — u # 0.
If x # and y # 0, then we choose a nonzero element u € D such that v # x and u # y.
As a result we obtain that x «~ wu. -
air a2 11 012
Let a = <a21 a22> € M, (D) and b = <b21 Doy
a12,b12 € My (n_1)(D), a21,b21 € M,_1)x1(D) and a22,b2a € My, _1yx(n—1)(D). Note
that there exists 0 # x € D such that a;1 — 2 = u; # 0 and by; — x = us # 0. Since asy —
agluflalg S M(nfl)(D) and boy — b21u1_1b12 S M(nfl)(D)a we can obtain Yy € GLn_l(D)
such that agg — agluflalg —Yy =" € GLnfl(D) and by — b21Uf1b12 -y € GLnfl(D)

They imply that
. U1 a2
a—diag(x,y) = _
9(z,y) (0621 v1 + a21uy 1a12>

> € M, (D), where aj1,b11 € D,

and
b= diag(z,y) <b21 U2+b21U1 512>
Since
u1 0\ fur ao
<a21 U1 +a21u1 a12) <a21u1 1) (0 v1>
and

(%) 0 (U2 b12>
bo1 UQ—Fleul 512 b21u2 1 0 wvy )’

U1 a2 bi2 .
we get, _ € GL, (D) as desired. O
& <a21 U1 + ag1u; 16112) <b21 vy + bajuy* b12> n(D)

For the last main theorem we need the following a series of lemmas.

Lemma 2.7. Let D be a division ring and o € End(Vp) such that Vp is spanned by
{y, (), a®(y),---} for somey € V. If D % Zy, L3, then

(1) 1 e a.

(2) If Vp is infinitely generated, then 1 = «.

Proof. (1) We may assume that Vp # 0. If ™ (y) ¢ yD +a(y)D +---+a" L(y)D for all
n > 1, then {y, a(y), a®(y), - - - } is a basis of Vp. Since « is a shift operator with respect to
the basis {y, a(y), a?(y), -}, we get 1 «~ a by Theorem 2.4(2). Now suppose that there
exists n € N such that o™ (y) ¢ yD+a(y)D+---+a" "1 (y)D. If n is minimal with respect to
this property, then {y, a(y), a?(y), - - - } forms a basis for V. Hence Endp(Vp) = M, (D).
By Lemma 2.3(2), we obtain that 1 «~ a.

(2) This follows from Theorem 2.4(1) using the arguments of (1). O

Lemma 2.8. Let D be a division ring such that D 2 Zo,Zs, o € End(Vp) and U be
an a-invariant subspace of Vp. Assume that there exists a vector y € U \'V such that
V=U+ Y50 (y)D. If the restriction a|y satisfies 1 «~ aly, then 1 e« o
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Proof. Let V = M @ U where M is a subspace which contains y. Define
a:V/iU—=V/U

T — a(v)

(see [10, Lemma 4]).

Clearly,
a™(y) = o™(v)
and there exists a D-subisomorphism 6y : V/U — M given by 0y(v) = 6(v) by [10, Lemma
4] where 6 is an idempotent in Endp (V') satisfying (V) = M and Ker(§) = U. By
[10, Lemma 4], we have the endomorphism ring of M as:

B:=0paby : M — V/U = VU — M.

By the hypothesis, {7,a(Y), -} spans V/U. Hence {7,a(7), --} spans V/U since
an(y) = a™(T). Now it is easy to see that {6y[7],00[@(7)], -} spans M. By Lemma
2.7, we get 8 «~ 1. Then f —v; = aj and 1 — vy = by for some units vy, ay, by of End(M).
By hypothesis, 1 «~ a|y, we have aly — ve = ag and 1 — vy = by for some units ve, as, bo
of End(M). Since V.= M @® U, we can define
v*(v) = v (m+u) = vi(m) + [a(m) — B(m) + va(u)].
v* is an automorphism of V: Since v*(m +w) = 0 implies v1(m) = 0 and [a(m) — B(m)] +
vao(u) = 0, whence m = u = 0, we get v* is monic. As u = va(ug) = v*(0 4 ug) for some
ug € U, we obtain U C Im(v*). If m € M, we write m = vy(mq) for mqy € M, then
a(my) — (my1) = —va(up). Then v*(my +wup) = vi(m1) + [a(m1) — S(m1) + v2(ug)] which
implies that M C Im(v*). Hence v* is epic.
o — v* is an automorphism: Firstly,
(a—v*)(m+u) =alm+u)—v*(m+u)

= a(m) + a(u) —vi(m) — [a(m) — f(m) — va(u)]

= ay, (u) — va(u) —vi(m) + B(m)

= by(u) + b1 (m).
Now, by a similar technic of previous proof, we can obtain that a — v* is monic and epic.
1 — v* is an automorphism: Firstly,

(I—=v)Y(m+4u) =1(m+u)—v*(m+u)
= a(m) + a(u) —vi(m) — [a(m) — B(m) — vo(u)]
=1(m) + 1(u) — vi(m) — [a(m) — B(m) + va(u)]
= 1(m) —vi(m) + 1(u) — va(u) + B(m) — a(m)
= bi1(m) + [b2(u) + B(m) — a(m)].

Finally, the same argument as for a — v* shows that 1 — v* is monic and epic. O

Theorem 2.9. Let D be a division ring and D 2 Zo,Z3. Then 1 «~ « for any o €
End(Vp).

Proof. Fix a € End(Vp). Define
x={(U,v):Up CV isa «a— invariant and ay, PN 1}.

Note that (0,0) € x. Now we define (U,v) < (U’,v') by U C U’ and Ullu = v is a partial
order of x. By Zorn’s Lemma, there exists a maximal element, say (U,v) in x.

Assume U # V. Then, take y € V\ U and let K := } ;5 a’(y)D. Hence we write
Vo = U + K. Clearly, Vy and K are a-invariant subspaces, a € End(Vp) and «j, |

because (U,v) € x. By Lemma 2.8, we get a «~ 1 which contradicts the maximality of
(U,v) € x. O
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Corollary 2.10. Let D be a division ring different from Zo and Zs, and Vp a countably
generated right vector space over D. If f is an unit additive map in S := End(Vp) such
that f(0) =0, then f is additive.

Proof. Observe that f(0) =0 so f(—a) = —f(a) for every a € U(S5).
Let a, 8 € S. By Theorem , there exists invertible © € S such that 1 —u,a —u, 5+ u
are invertible. Hence,

fla+B) =fla=1)+ f(1+5)
— Fla—utu—1)+ f(1—utu+f)
=fla—uw)+ flu—1)+ f1—u)+ f(u+p)
= fla—u)+ f(u) = f(1) + f(1) + f(—u) + fu+ B)
=fla—u+u)+ f(—u+u+p)
= f(a) + f(B),
as desired. ]

Acknowledgment. The authors are very grateful to the editor and the referee, who
suggested to Corollary 2.10, for their valuable comments and suggestions to improve this

paper.

References

[1] V.P. Camillo and J. J. Simon, The Nicholson-Varadarajan Theorem on clean linear
transformations, Glasg. Math. J. 44, 365369, 2002.

[2] H. Chen, Decompositions of countable linear transformations, Glasg. Math. J. 52 (3),
427433, 2010.

[3] H. Chen, Decompositions of linear Transformations over division rings, Algebra
Collog. 19 (3), 459-464, 2012.

[4] B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and modules, Q. J.
Math. 49 (3), 331-344, 1998.

[5] K.R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure
Appl. Algebra 54, 261-287, 1998.

[6] M.T. Kosan, S. Sahinkaya and Y. Zhou, Additive maps on units of rings, Canad.
Math. Bull. 61 (1), 130-141, 2018.

[7] M.T. Kosan and Y. Zhou, A class of rings with the 2-sum property, Appl. Algebra
Engrg. Comm. Comput. 32 (3), 399-408, 2021.

[8] C. Li, L. Wang and Y. Zhou, On rings with the Goodearl-Menal condition, Comm.
Algebra 40 (12), 4679-4692, 2012.

[9] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc.
229, 269-278, 1977.

[10] W.K. Nicholson, K. Varadarajan, Countable linear transformations are clean, Proc.
Amer. Math. Soc. 126 (1), 6164, 1998.

[11] L. Wang and Y. Zhou, Decomposing linear transformations, Bull. Aust. Math. Soc.
83, 256261, 2011.

[12] K.G. Wolfson, An ideal-theoretic characterization of the ring of all linear transforma-
tions, Amer. J. Math. 75, 358-386, 1953.

[13] D. Zelinsky, Every linear transformation is sum of nonsingular ones, Proc. Amer.
Math. Soc. 5, 627-630, 1954.



