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Abstract. Through this paper, via the operators (·)⋆ and Ψ, we presented

notion of ⋆-Locally set in an ideal topological space ζI as a new stronger form

of locally closed set, and considered relations with various existing weak form
of locally closed set. Preservations of direct images as well as inverse images

of (·)⋆, Ψ, ⋆-perfect and various weak forms of locally closed set including

⋆-Locally closed set are important investigating part. Besides, we pointed out
that consideration of ‘bijectivity’ in Lemma 3.1 of [24] is sufficient, and the

Lemma 3.3 of [24] is wrong. We demonstrated two modifications of the last

one.

1. Introduction

Locally closed set and its study is not a new idea in topology. This notion
was disclosed by Bourbaki [3], and after that it has been extensively studied by a
good number of mathematicians (see [7,12,20,21]). This study has been interesting
because it generalizes both open and closed sets. But the study of a locally closed set
relative to an ideal (see [13]) is a new idea, and this has been introduced through this
paper. The authors Jeyanthi et al. [12] and the author Dontchev [6] have studied
locally closed sets in terms of ideal, but these locally closed sets differ somewhat
from the current one.

We now consider some preliminary concepts from literature for developing the
paper.

Consider a topological space (Z,T) (henceforth, in this paper we shall denote
it by ζ), and suppose I is an ideal on Z. The set-valued map (·)⋆ : ℘(Z) → ℘(Z)
associated by the formula ‘H⋆ = {a ∈ Z : Ga ∩H /∈ I for every Ga ∈ Ta} for every
H ⊆ Z’ is designated as the local function [11] w.r.t. the ideal I and the topology T,

2020 Mathematics Subject Classification. 54D10, 54C10, 54D9, 54C99.

Keywords. Ideal, local function, Ψ-operator, locally closed set, homeomorphism.
1 jiarul8435@gmail.com-Corresponding author; 0000-0003-1055-9820
2 spmodak2000@yahoo.co.in; 0000-0002-0226-2392.

©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

25



26 J. HOQUE, S. MODAK

where Ta = {G ∈ T : a ∈ G} and ℘(Z) stands for power set of Z. Other notations
used instead of H⋆ are H⋆(I,T) and H⋆(I). For the trivial ideals {∅} and ℘(Z),
values of (·)⋆ are H⋆({∅}) = Cl(H) (closure operator) and H⋆(℘(Z)) = ∅ (zero
operator), respectively. An interesting ideal on Z is In consisting of all nowhere
dense sets of ζ, and H⋆(In) = Cl(Int(Cl(H))) (see [11]), where ‘Int’ stands for
interior operator. Further, for the ideals If = {I ⊆ Z : I is finite} and Ic = {I ⊆
Z : I is countable}, H⋆(If ) = Hω (collection of all ω-accumulation point of H) and
H⋆(Ic) = Hcd (collection of all condensation point of H) (see [11]). Thus one can
think the local function (·)⋆ as a generalization of closure operator.

An important set-operator familiar to researchers as a complement of the local
function (·)⋆ : ℘(Z) → ℘(Z) is Ψ : ℘(Z) → ℘(Z), and its value acting on H ⊆ Z
is calculated by the formula Ψ(H) = Z \ (Z \ H)⋆ [22]. Note that (·)⋆ (resp.,
Ψ) is not necessarily a closure (resp., interior) operator. However, the operator
Cl⋆ : ℘(Z) → ℘(Z) given by the formula Cl⋆(H) = H∪H⋆ determines Kuratowski’s
closure operator [2, 11, 13, 27], and henceforth Z gets a new topology, named ⋆-
topology [1,2,8–10,16,23], induced by Cl⋆. Let’s name this topology as T⋆. Clearly,
T ⊆ T⋆ (see [11]). The interior operator of the space ζ⋆ = (Z,T⋆) is given by
Int⋆(H) = Z \ Cl⋆(Z \H).

Moreover, if H ⊆ H⋆, then H is known as ⋆-dense in itself [10], and if H = H⋆,
then H is termed as ⋆-perfect [10].

2. L⋆ Operator

We are beginning this section with an example to draw interest to the fact that
through idealizing a space ζ by way of a proper ideal I (i.e., Z /∈ I), one can find
an H ⊆ Z for which H⋆ intersects Ψ(H) i.e., the assertion ‘K⋆ ∩ Ψ(K) = ∅ for
every K ⊆ Z’ need no longer be correct. The notations ζI and ζ⋆I will be used to
recognize respectively the triplets (Z,T, I) and (Z,T⋆, I), ideal topological spaces,
in this write-up.

Example 1. Consider T = {∅, {ℓ1},Z} and I = {∅, {ℓ2}} on Z = {ℓ1, ℓ2, ℓ3}.
Then for H = {ℓ1, ℓ2}, H⋆ = Z, Ψ(H) = {ℓ1} and H⋆ ∩Ψ(H) ̸= ∅.

Definition 1. We define the L⋆ operator on ζI as a set-valued map L⋆ : ℘(Z) →
℘(Z) by the equation L⋆(H) = H⋆ ∩Ψ(H) for every H ⊆ Z.

Remark 1. As, we know from [11] that H⋆(I,T) = H⋆(I,T⋆), so L⋆ values of
every H ⊆ Z w.r.t. ζI and ζ⋆I are same.

We shall now discuss the value of L⋆(H) for different ideals on a topological
space.

• I = {∅} implies L⋆(H) = Cl(H) ∩ (Z \ Cl(Z \ H)) = Cl(H) ∩ Int(H) =
Int(H).

• I = ℘(Z) implies L⋆(H) = ∅ ∩Ψ(H) = ∅.
• I = In implies L⋆(H) = Cl(Int(Cl(H)))∩Int(Cl(Int(H))) = Int(Cl(Int(H))).
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• I = If implies L⋆(H) = Hω ∩ (Z \ (Z \H)ω) ⊆ Hω.
• I = Ic implies L⋆(H) = Hcd ∩ (Z \ (Z \H)cd) ⊆ Hcd.

Study of the L⋆ operator will be therefore fascinating if we are deal with a
non-trivial ideal (non-trivial means other than {∅} and ℘(Z)).

Theorem 1. For H, K ⊆ Z, the followings are true in ζI:

(1) L⋆(∅) = ∅,
(2) L⋆(Z) = Z⋆,
(3) L⋆(Z) = Z if and only if I ∩ T = {∅},
(4) L⋆(H) = Ψ(H) \Ψ(Z \H),
(5) L⋆(H) = H⋆ \ (Z \H)⋆,
(6) Z \ L⋆(H) = (Z \H)⋆ ∪ (Z \H⋆),
(7) L⋆(Z \H) = Z \ (Ψ(H) ∪H⋆),
(8) For H ⊆ K, L⋆(H) ⊆ L⋆(K),
(9) L⋆(H) ∪ L⋆(K) ⊆ L⋆(H ∪K),
(10) L⋆(H ∩K) ⊆ L⋆(H) ∩ L⋆(K),
(11) L⋆(H) ⊆ H⋆,
(12) L⋆(H) ⊆ Ψ(H),
(13) H ∩ L⋆(H) = H⋆ ∩ Int⋆(H),
(14) H ∩ L⋆(H) ⊆ Int⋆(H),
(15) L⋆(H) ⊆ H⋆ ⊆ Cl⋆(H) ⊆ Cl(H),
(16) For H ∈ T⋆, H ∩H⋆ ⊆ L⋆(H) ⊆ H⋆,
(17) For H ∈ T, H ∩H⋆ ⊆ L⋆(H) ⊆ H⋆,
(18) For a regular open H [25], L⋆(H) = H ∩H⋆,
(19) Int(L⋆(H)) = Ψ(H) ∩ Int(H⋆),
(20) Int⋆(L⋆(H)) ⊇ Ψ(H) ∩ Int⋆(H⋆),
(21) Cl(L⋆(H)) ⊆ Cl(Ψ(H)) ∩H⋆,
(22) Cl⋆(L⋆(H)) ⊆ Cl⋆(Ψ(H)) ∩H⋆,
(23) Int⋆(H⋆) ∩Ψ(H) ⊆ Int⋆(L⋆(H)) ⊆ Cl⋆(L⋆(H)) ⊆ H⋆ ∩ Cl⋆(Ψ(H)),
(24) For a ⋆-perfect set H, L⋆(H) = H ∩Ψ(H) = Int⋆(H),
(25) For a ⋆-dense in itself set H, L⋆(H) ⊇ Int⋆(H).

Proof. (1) L⋆(∅) = ∅⋆ ∩Ψ(∅) = ∅.
(2) L⋆(Z) = Z⋆ ∩Ψ(Z) = Z⋆ ∩ Z = Z⋆.
(3) Follows from the fact Z⋆ = Z if and only if I ∩ T = {∅}.
(4) L⋆(H) = H⋆ ∩Ψ(H) = (Z \Ψ(Z \H)) ∩Ψ(H) = Ψ(H) \Ψ(Z \H).
(5) L⋆(H) = H⋆ ∩Ψ(H) = H⋆ ∩ (Z \ (Z \H)⋆) = H⋆ \ (Z \H)⋆.
(6) Z\L⋆(H) = Z\(H⋆∩Ψ(H)) = (Z\H⋆)∪(Z\Ψ(H)) = (Z\H⋆)∪(Z\H)⋆.
(7) Obvious.
(8) Obvious.
(9) Follows from 8.

(10) Follows from 8.
(11) Obvious.
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(12) Obvious.
(13) H ∩ L⋆(H) = H ∩ (H⋆ ∩Ψ(H)) = H⋆ ∩ Int⋆(H).
(14) From 10, L⋆(H) ⊆ Ψ(H). Therefore, H ∩ L⋆(H) ⊆ H ∩Ψ(H) = Int⋆(H).
(15) Obvious from the fact H⋆ ⊆ H⋆ ∪H = Cl⋆(H) ⊆ Cl(H).
(16) H ∈ T implies H ⊆ Ψ(H). Now L⋆(H) = H⋆ ∩ Ψ(H) implies H⋆ ∩ H ⊆

L⋆(H).
(17) Obvious from the fact T ⊆ T⋆.
(18) SinceH is regular open, soH = Ψ(H) [2,8,18]. Now, L⋆(H) = H⋆∩Ψ(H) =

H⋆ ∩H.
(19) Int(L⋆(H)) = Int(Ψ(H) ∩H⋆) = Int(Ψ(H)) ∩ Int(H⋆) = Ψ(H) ∩ Int(H⋆).
(20) Int⋆(L⋆(H)) = Int⋆(H⋆ ∩ Ψ(H)) = [H⋆ ∩ Ψ(H)] ∩ Ψ[H⋆ ∩ Ψ(H)] = [H⋆ ∩

Ψ(H)] ∩ [Ψ(H⋆) ∩ Ψ(Ψ(H))] ⊇ [H⋆ ∩ Ψ(H)] ∩ [Ψ(H⋆) ∩ Ψ(H)] = [H⋆ ∩
Ψ(H⋆)] ∩Ψ(H) = Int⋆(H⋆) ∩Ψ(H).

(21) Similar to 19.
(22) Similar to 19.
(23) Follows from 20.
(24) Trivial.
(25) Trivial.

□

Inequality of the result (9) of Theorem 1 is highlighted in next example.

Example 2. Take Z = R (set of reals) with usual topology and I = {∅}. Pick
H = [0, 2021) and K = [2021, 2022). Then L⋆(H) = Int(H) = (0, 2021), L⋆(K) =
Int(K) = (2021, 2022) and L⋆(H ∪ K) = L⋆([0, 2022)) = (0, 2022). Evidently,
L⋆(H) ∪ L⋆(K) ̸= L⋆(H ∪K).

Theorem 2. Suppose I is an ideal on ζ and H ⊆ Z. If a ∈ L⋆(H), then there
exists at least one Ka ∈ Ta such that Ka /∈ I but Ka \H ∈ I.

Proof. a ∈ L⋆(H) gives a ∈ H⋆ but a /∈ (Z \H)⋆. Now, a /∈ (Z \H)⋆ assures the
existence of a Ka ∈ Ta such that Ka ∩ (Z \H) = Ka \H ∈ I. On the other hand,
a ∈ H⋆ tells that Ka ∩H /∈ I. This directs that Ka /∈ I, since I is an ideal. Hence,
Ka /∈ I but Ka \H ∈ I, as aimed. □

We talk about the validation of the converse part of Theorem 2 in next example.

Example 3. Take T = {∅, {ℓ1}, {ℓ2},Z} and I = {∅, {ℓ1}} on Z = {ℓ1, ℓ2}. Let
H = {ℓ2}. Then H⋆ = {ℓ2} and Ψ(H) = Z and hence L⋆(H) = {ℓ2}. Now, pick up
the point ℓ1 and choose Kℓ1 = Z ∈ Tℓ1 . Evidently, Kℓ1 /∈ I, Kℓ1 \H = {ℓ1} ∈ I but
ℓ1 /∈ L⋆(H). Therefore, the reverse direction of Theorem 2 will usually not work.

3. ⋆-Locally Closed Sets

Definition 2. We call an H ⊆ Z as ⋆-Locally closed in ζI if there is a K ⊆ Z such
that H = L⋆(K), and use the symbol L⋆(ζI) to mean {H ⊆ Z : H is ⋆-Locally closed}.
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Example 4. Topologize Z = R by considering T = {∅,Q,R} and I = ℘(Q), where
Q is the set of all rationals. Then for any H ⊆ Z,

H⋆ =

{
∅, if H ∩ (R \Q) = ∅
R \Q, if H ∩ (R \Q) ̸= ∅.

Take L = R \ Q. We observe that L = L⋆ ∩ Ψ(L). So, R \ Q is a ⋆-Locally closed
set.

Example 5. Consider ζI discussed in Example 1, and take H = {ℓ1}, K = {ℓ1, ℓ2}.
Since H = K⋆ ∩Ψ(K), so H is ⋆-Locally closed in ζI.

Definition 3. An L ⊆ Z of a space ζ is familiar with the name locally closed
[7] (resp., semi-locally closed [26], λ-locally closed [20]) if we can give the form
L = H ∩K, where H is open (resp., semi-open [14], λ-open [20]) and K is closed
(resp., semi-closed, closed).

Definition 4. An L ⊆ Z is addressed as I-locally closed [6] (resp., semi-I-locally
closed [12]) if we can present L as L = H ∩ K, where H ∈ T and K is ⋆-perfect
(resp., L = H ∩ L⋆, where H is semi-open). An equivalent definition of L to be
I-locally closed is L = H ∩ L⋆, where H ∈ T (see [12]).

Remark 2. As we know from [11], H⋆ is closed, and from [22], Ψ(H) is open,
it is derived that ⋆-Locally closed sets are locally closed. For reverse direction, we
consider next example.

Example 6. Take T = {∅, {ℓ1}, {ℓ2}, {ℓ4}, {ℓ1, ℓ2}, {ℓ1, ℓ4}, {ℓ2, ℓ4}, {ℓ1, ℓ2, ℓ4},Z}
and I = {∅, {ℓ1}, {ℓ3}, {ℓ1, ℓ3}} on Z = {ℓ1, ℓ2, ℓ3, ℓ4}. Different values of K ⊆ Z
under the operators Cl, Int, (·)⋆ and Ψ are considered in TABLE 1.

Table 1. Values of K ⊆ Z under various operators

K Cl(K) Int(K) Cl(Int(K)) K⋆ Ψ(K) L⋆(K)

∅ ∅ ∅ ∅ ∅ {ℓ1} ∅
{ℓ1} {ℓ1, ℓ3} {ℓ1} {ℓ1, ℓ3} ∅ {ℓ1} ∅
{ℓ2} {ℓ2, ℓ3} {ℓ2} {ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ3} {ℓ3} ∅ ∅ ∅ {ℓ1} ∅
{ℓ4} {ℓ3, ℓ4} {ℓ4} {ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ4}

{ℓ1, ℓ2} {ℓ1, ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ1, ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ1, ℓ3} {ℓ1, ℓ3} {ℓ1} {ℓ1, ℓ3} ∅ {ℓ1} ∅
{ℓ1, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ4}
{ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ2} {ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ2, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}
{ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ4} {ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ4}

{ℓ1, ℓ2, ℓ3} {ℓ1, ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ1, ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ1, ℓ2, ℓ4} Z {ℓ1, ℓ2, ℓ4} Z {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}
{ℓ1, ℓ3, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} ℓ4
{ℓ2, ℓ3, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}

Z Z Z Z {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}



30 J. HOQUE, S. MODAK

We observe that {ℓ3} is locally closed but not ⋆-Locally closed. Also, {ℓ2} is ⋆-
Locally closed but not ⋆-perfect whereas {ℓ2, ℓ3} is ⋆-perfect but not ⋆-Locally closed.
Further, {ℓ3, ℓ4} is I-locally closed but not ⋆-Locally closed; {ℓ2, ℓ4} is semi-I-locally
closed but not ⋆-Locally closed. Here, ⋆-Locally closed sets are precisely ∅, {ℓ2},
{ℓ4} and {ℓ2, ℓ3, ℓ4}, and these are also I-locally closed and hence, they are semi-
⋆-locally closed (as we know from [12] that I-locally closed implies semi-I-locally
closed). Because {ℓ4} is ⋆-Locally closed is locally closed and hence, λ-locally closed
(since locally closed implies λ-locally closed [20]), whereas {d} in Example 2.3 of [20]
λ-locally closed but not ⋆-Locally closed.

Following diagram will provide a transparent idea regarding different local ver-
sions of sets just discussed above:

λ− locally closed

⋆− Locally closed locally closed semi− locally closed

⋆− perfect I− locally closed semi− I− locally closed

Figure 1. Implication Diagram

Theorem 3. If H be ⋆-dense in itself and ⋆-Locally closed in ζI, then H is I-locally
closed.

Proof. Straightforward. □

Corollary 1. If H be ⋆-dense in itself and ⋆-Locally closed in ζI, then H is semi-
I-locally closed.

Theorem 4. An L ⊆ Z is ⋆-Locally closed in ζI if and only if L = H⋆ \ (Z \H)⋆

for some H ⊆ Z.

Proof. Immediate from Theorem 1(5). □

Theorem 5. An L ⊆ Z is ⋆-Locally closed in ζI if and only if L = Ψ(H)\Ψ(Z\H)
for some H ⊆ Z.

Proof. Immediate from Theorem 1(4). □

Theorem 6. An L ⊆ Z is ⋆-Locally closed in ζI if and only if Z \ L = (Z \H)⋆ ∪
(Z \H⋆) for some H ⊆ Z.

Proof. Obvious from Theorem 1(6). □
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It is known that in ζ, open as well as closed sets are locally closed whereas in
ζI, this occurrence need not longer be true in case of ⋆-Locally closedness. For this
purpose, consider the next example.

Example 7. Think about Example 3, and pick {ℓ1}, a clopen set. Since no H ⊆ Z
satisfies {ℓ1} = H⋆ ∩Ψ(H), {ℓ1} is not ⋆-Locally closed in ζI.

Theorem 7. If I ∩ T = {∅}, then every regular open set is ⋆-Locally closed in ζI.

Proof. Pick a regular open set H. So H = Ψ(H). Now, I∩T = {∅} yields H ⊆ H⋆.
Evidently, H⋆ ∩Ψ(H) = H. This allows that H ∈ L⋆(ζI). □

Example 8. Following facts are observed in a ζI:

• In Example 3, {ℓ2} is ⋆-Locally closed but its complement {ℓ1} is not.
• In Example 3, {ℓ2} is ⋆-Locally closed but its super set {ℓ2, ℓ3} is not.
• In Example 6, {ℓ2, ℓ3, ℓ4} is ⋆-Locally closed but its subset {ℓ2, ℓ3} is not.
• In Example 6, for the subset {ℓ2, ℓ3, ℓ4}, L⋆({ℓ2, ℓ3, ℓ4}) is not open.
• In Example 6, for the subset {ℓ4}, L⋆({ℓ4}) is not closed.
• In Example 6, {ℓ2} and {ℓ4} are ⋆-closed but their union {ℓ2, ℓ4} is not.

Remark 3. From above example, we say that the compilation L⋆(ζI) usually does
not form a topology, boolean algebra, generalized topology [15], ideal, filter [4] and
grill [5, 17].

4. Homeomorphisms

Though this entire section, an ideal I is considered as proper, ϑ as (W,O) and
ϑ⋎(I) as (W,O,⋎(I)).

Lemma 1. [24] If an ideal I on Z be proper and ⋎ : Z → W bijective, then the
ideal ⋎(I) = {⋎(I) : I ∈ I} is proper on W.

Below, we now disclose that ‘bijectivity’ of ⋎ in Lemma 1 is sufficient to carry a
(proper) ideal to a (proper) ideal.

Lemma 2. Suppose ⋎ : Z → W is a map, and I an ideal on Z. Then ⋎(I) defined
in Lemma 1 is an ideal on W. Moreover, injectivity of ⋎ preserves ‘properness’ of
I.

Proof. Firstly, ∅ ∈ I (since an ideal) implies ⋎(∅) ∈ ⋎(I). But ⋎(∅) = ∅. So,
∅ ∈ ⋎(I). Secondly, pick E1, E2 ∈ ⋎(I). Then, by the definition of ⋎(I), choose
I1, I2 ∈ I such that E1 = ⋎(I1) and E2 = ⋎(I2). Now, E1 ∪E2 = ⋎(I1) ∪⋎(I2) =
⋎(I1 ∪ I2) = ⋎(I3), where I3 = I1 ∪ I2 ∈ I (since I is ideal). This permits that
E1∪E2 ∈ ⋎(I). Lastly, take F1 ⊆ F2 and F2 ∈ ⋎(I). So, there is an I ∈ I such that
F2 = ⋎(I). Now, F1 ⊆ ⋎(I) = {⋎(u) : u ∈ I} knocks us to construct an I0 ⊆ Z as:
‘Pick those u ∈ I whose images under ⋎ goes to F1, and keep such u in I0’. Thus,
I0 = {u ∈ I : ⋎(u) ∈ F1}. Clearly, ⋎(I0) = F1 and I0 ⊆ I. Because I is an ideal,
I ∈ I implies I0 ∈ I. This again implies ⋎(I0) ∈ ⋎(I) i.e., F1 ∈ ⋎(I). Thus, we
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finally present that ⋎(I) is an ideal on W.
For second part, suppose I is proper and ⋎ injective. Claim: ⋎(I) is proper i.e.,
W /∈ ⋎(I). If not, there exists I ∈ I such that ⋎(I) = W. Now, I ⊆ Z implies W =
⋎(I) ⊆ ⋎(Z) ⊆ W whence ⋎(I) = ⋎(Z). This yields ⋎−1(⋎(I)) = ⋎−1(⋎(Z))
implies I = Z (since ⋎ is injective). So, Z ∈ I, a contradiction. □

As consequences of the Lemma 1 we have following:

Theorem 8. Let ⋎ : ζI → ϑ is a homeomorphism. Then, for every H ⊆ Z, we
have

(1) ⋎[H⋆(I)] = [⋎(H)]⋆(⋎(I)),
(2) ⋎[Ψ(H)(I)] = Ψ[⋎(H)](⋎(I)).

Proof. (1) Assume v /∈ [⋎(H)]⋆(⋎(I)). Pick an E ∈ O such that v ∈ E and
E ∩ ⋎(H) ∈ ⋎(I). Draw an I ∈ I such that ⋎(I) = E ∩ ⋎(H). Because
⋎ is injective, ⋎−1(E) ∩H = ⋎−1(E) ∩ ⋎−1(⋎(H)) = ⋎−1(E ∩ ⋎(H)) =
⋎−1(⋎(I)) = I ∈ I, where ⋎−1(E) ∈ T⋎−1(v) (by continuity of ⋎). This

tells that ⋎−1(v) /∈ H⋆(I), and we have v /∈ ⋎[H⋆(I)]. So, ⋎[H⋆(I)] ⊆
[⋎(H)]⋆(⋎(I)). Reversely, pick u ∈ W such that u /∈ ⋎[H⋆(I)]. Then,
⋎−1(u) /∈ H⋆(I). There is G ∈ T⋎−1(u) such that G ∩H ∈ I. So, ⋎(G) ∩
⋎(H) = ⋎(G ∩ H) ∈ ⋎(I), where ⋎(G) ∈ Ou. This highlights that u /∈
[⋎(H)]⋆(⋎(I)). Therefore, [⋎(H)]⋆(⋎(I)) ⊆ ⋎[H⋆(I)]. Hence, the result.

(2) ⋎[Ψ(H)(I)] = ⋎[Z \ (Z \ H)⋆(I)] = W \ ⋎[(Z \ H)⋆(I)] = W \ [⋎(Z \
H)]⋆(⋎(I)) (by first part) = W \ [W \⋎(H)]⋆(⋎(I)) = Ψ[⋎(H)](⋎(I)).

□

Theorem 9. For a homeomorphism ⋎ : ζI → ϑ⋎(I), followings are well fulfilled:

(1) if H be ⋆-perfect in ζI, then ⋎(H) is ⋆-perfect in ϑ⋎(I),
(2) if H be I-locally closed in ζI, then ⋎(H) is ⋎(I)-locally closed in ϑ⋎(I),
(3) if H be semi-I-locally closed in ζI, then ⋎(H) is semi-⋎(I)-locally closed in

ϑ⋎(I).

Proof. First two results are straightforward from Theorem 8 (1), and third one
follows from Theorem 8 (1) and the fact that ‘E is semi-open implies ⋎(E) is
semi-open’. □

For more homeomorphic image regarding (·)⋆ and Ψ operators interested readers
can see [19].

Theorem 10. For a homeomorphism ⋎ : ζI → ϑ⋎(I) and for H ⊆ Z, we have

(1) ⋎[L⋆(H)(I)] = L⋆[⋎(H)](⋎(I)),
(2) H ∈ L⋆(ζI) implies ⋎(H) ∈ L⋆(ϑ⋎(I)).

Proof. First one is derived from Theorem 8, and second one is a consequence of
first part. □
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Lemma 3. [24] If an ideal J on W be proper and ⋎ : Z → W surjective, then the
ideal ⋎−1(J) := {⋎−1(J) : J ∈ J} is proper on Z.

Below, by presenting a sophisticated counterexample, we will show the Lemma
3 is wrong.

Example 9. Consider the map ⋎ : Z → N ∪ {0} as x 7→ |x|. Here, Z and N
denote the set of all integers and the set of all positive integers, respectively, and
| · | is the modulus function. Note that ⋎ is surjective. Consider the subset O of
all odd positive integers, and take J = ℘(O). Then, J is a proper ideal on N ∪ {0}.
Now, {1} ∈ J implies ⋎−1({1}) = {−1,+1} ∈ ⋎−1(J). Though {−1} ⊆ {−1,+1},
{−1} /∈ ⋎−1(J). Thus, ⋎−1(J) is not an ideal on Z.

A modification of Lemma 3 is presented below:

Lemma 4. Let ⋎ : Z → W be a map, and J an ideal on W. Then

⋎←(J) := {E ⊆ Z : E ⊆ ⋎−1(J), J ∈ J}

is an ideal on Z. In addition, surjectivity of ⋎ preserves ‘properness’ of J.

Proof. Firstly, ∅ ⊆ ⋎−1(∅), where ∅ ∈ J (since an ideal) implies ∅ ∈ ⋎←(J).
Secondly, take E1 ⊆ E2 and E2 ∈ ⋎←(J). There is a J ∈ J such that E2 ⊆
⋎−1(J), and so, E1 ⊆ ⋎−1(J) implies that E1 ∈ ⋎←(J). Thirdly, consider E1,
E2 ∈ ⋎←(J). Then, pick J1, J2 ∈ J such that E1 ⊆ ⋎−1(J1) and E2 ⊆ ⋎−1(J2).
Now, E1 ∪ E2 ⊆ ⋎−1(J1) ∪ ⋎−1(J2) = ⋎−1(J1 ∪ J2), where J1 ∪ J2 ∈ J (since J is
an ideal). Therefore, E1 ∪ E2 ∈ ⋎←(J). Thus, we demonstrate that ⋎←(J) is an
ideal on Z.
For second part, consider ⋎ is surjective and J proper. Claim: ⋎←(J) is proper. If
not so, Z ∈ ⋎←(J). Choose J ∈ J such that Z ⊆ ⋎−1(J). Because ⋎ is surjective,
W = ⋎(Z) ⊆ ⋎(⋎−1(J)) = J ⊆ W implies W = J ∈ J, a contradiction. □

We demonstrate another modification of Lemma 3 in next corollary:

Corollary 2. If ⋎ be bijective, then ⋎−1(J) of Lemma 3 coincides with ⋎←(J),
and hence, becomes an ideal.

Proof. It is transparent from the fact ‘for each J ∈ J, ⋎−1(J) ⊆ ⋎−1(J)’ that
⋎−1(J) ⊆ ⋎←(J). For backward part, let’s pick an E ∈ ⋎←(J). Then, E ⊆ ⋎−1(J)
for some J ∈ J. Because ⋎ is surjective, ⋎(E) ⊆ ⋎(⋎−1(J)) = J implies ⋎(E) ∈ J.
Because ⋎ is injective, E = ⋎−1(⋎(E)) ∈ ⋎−1(J). Thus, ⋎←(J) ⊆ ⋎−1(J), as
aimed. □

As an application of Corollary 2, we have following important result:

Theorem 11. For a homeomorphism ⋎ : ζ⋎−1(J) → ϑJ, and for K ⊆ W, we have

(1) ⋎−1[K⋆(J)] = [⋎−1(K)]⋆(⋎−1(J)),
(2) ⋎−1[Ψ(K)(J)] = Ψ[⋎−1(K)](⋎−1(J)).
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Proof. (1) Assume u /∈ [⋎−1(K)]⋆(⋎−1(J)). Select an E ∈ Tu for which E ∩
⋎−1(K) ∈ ⋎−1(J). Draw a J ∈ J such that E∩⋎−1(K) = ⋎−1(J). Because
⋎ is bijective, ⋎(E) ∩ K = ⋎(E) ∩ ⋎(⋎−1(K)) = ⋎(E ∩ ⋎−1(K)) =
⋎(⋎−1(J)) = J ∈ J, where continuity of ⋎−1 implies ⋎(E) ∈ O⋎(u).

This states that ⋎(u) /∈ K⋆(J), and this again implies u /∈ ⋎−1[K⋆(J)].
Therefore, ⋎−1[K⋆(J)] ⊆ [⋎−1(K)]⋆(⋎−1(J)). For reverse part, pick v /∈
⋎−1[K⋆(J)]. Then, ⋎(v) /∈ K⋆(J). Choose F ∈ O⋎(v) such that F ∩K ∈ J.
Continuity of ⋎ assures ⋎−1(F ) ∈ Tv, and ⋎−1(F ) ∩ ⋎−1(K) = ⋎−1(F ∩
K) ∈ ⋎−1(J). This indicates v /∈ [⋎−1(K)]⋆(⋎−1(J)), and consequently
[⋎−1(K)]⋆(⋎−1(J)) ⊆ ⋎−1[K⋆(J)].

(2) ⋎−1[Ψ(K)(J)] = ⋎−1[W \ (W \ K)⋆(J)] = Z \ ⋎−1[(W \ K)⋆(J)] = Z \
[⋎−1(W \ K)]⋆(⋎−1(J)) (by first part) = Z \ [Z \ ⋎−1(K)]⋆(⋎−1(J)) =
Ψ[⋎−1(K)](⋎−1(J)).

□

Theorem 12. For a homeomorphism ⋎ : ζ⋎−1(J) → ϑJ, followings are well fulfilled:

(1) if K be ⋆-perfect in ϑJ, then ⋎−1(K) is ⋆-perfect in ζ⋎−1(J),

(2) if K be J-locally closed in ϑJ, then ⋎−1(K) is ⋎−1(J)-locally closed in
ζ⋎−1(J),

(3) if K be semi-J-locally closed in ϑJ, then ⋎−1(K) is semi-⋎−1(J)-locally
closed in ζ⋎−1(J).

Proof. First two results are straightforward from Theorem 11 (1), and third one
follows from Theorem 11 (1) and the fact that ‘F is semi-open implies ⋎−1(F ) is
semi-open’. □

Theorem 13. For a homeomorphism ⋎ : ζ⋎−1(J) → ϑJ, and for K ⊆ W, we have

(1) ⋎−1[L⋆(K)(J)] = L⋆[⋎−1(K)](⋎−1(J)),
(2) K ∈ L⋆(ϑJ) implies ⋎−1(K) ∈ L⋆(ζ⋎−1(J)).

Proof. First one is derived from Theorem 11, and second one is a consequence of
first part. □

5. Conclusion

Kuratowski’s local function ‘(·)⋆’ is a generalized operator of the classic closure
operator ‘Cl’, and ‘Ψ’ operator is a generalized operator of the classic interior op-
erator ‘Int’. On the other side, one can think Bourbaki’s locally closed sets are
applications of the operators ‘Cl’ and ‘Int’. Replacing these classic operators by
the updated generalized operator ‘(·)⋆’ and ‘Ψ’, we derived a new version of locally
closed set, and named ⋆-Locally closed. Example 6 and FIGURE 1 show that our
⋆-Locally closed version is a stronger form of locally closed set.
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