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Abstract: The combination of advanced scientific computing and quantum chemistry improves the existing
approach  in  all  chemistry  and  material  science  fields.  Machine  learning  has  revolutionized  numerous
disciplines within chemistry and material science. In this study, we present a supervised learning model for
predicting the HOMO and LUMO energies of alkanes, which is trained on a database of molecular topological
indices. We introduce a new moment topology approach has been introduced as molecular descriptors.
Supervised learning utilizes artificial neural networks and support vector machines, taking advantage of the
correlation between the molecular descriptors. The result demonstrate that this supervised learning model
outperforms  other  models  in  predicting  the  HOMO  and  LUMO  energies  of  alkanes.  Additionally,  we
emphasize the importance of selecting appropriate descriptors and learning systems, as they play crucial
role in accurately modeling molecules with topological orbitals. 

Keywords: Supervised machine learning, molecular descriptor, topological indices, electronic properties.

Submitted: August 24, 2022. Accepted: October 28, 2023.

Cite this: Zabidi  ZM,  Zakaria  NA,  Alias  AN.  Supervised Machine Learning-Graph Theory Approach For
Analyzing the Electronic Properties of Alkane. JOTCSA; 11(1): 137-48. 

DOI: https://doi.org/10.18596/jotcsa.1165158. 
 
*Corresponding author. E-mail: ahmadnazib111@uitm.edu.my

1. INTRODUCTION

Chemical  graph  theory  is  a  multidisciplinary  field
combining  graph  theory  and  knowledge  of
chemistry.  In  chemistry,  graph  theory  is  used  to
analyze  various  chemical  phenomena  such  as
chemical  compound  composition  and  classification
(1).  Chemical graph theory uses the set of points
connected by lines to determine structure-property
relationships. The molecular structure represented a
graph G, a set of mathematical structures consisting
of  several  vertices  and  edges.  In  chemical  graph
theory,  the  molecular  structure  is  typically  a
suppressed hydrogen with the carbon atom skeleton
representing  the  covalent  bond  between  carbon-
carbon  atoms  (2). The  molecular  structure  is
associated  with  the  topological index  in  chemical
graph  theory.  Topological index  is  a  numerical
number invariant  for  each molecule based on the
criteria set using graph theory. Topological indices
have  gained  much  attention  in  various  areas  of

biology  and  chemistry  (3).  These  are  due  to  the
topology indices’ most important use in quantitative
structure-property  relationships  (QSPR)  and
quantitative structure-activity  relationships (QSAR)
(4). Wiener invented the first topology index, known
as the Wiener distance index. The Wiener index has
been  improved  by  Randic,  known  as  the  hyper-
Wiener index  (5).  The improvement of the Wiener
index  is  still  ongoing  to  tailor  the  application
requirement  (6). There  are  various  classes  of
topological indices, such as distance-based, vertex-
degree-based,  and  spectrum-based  topological
indices (7). 

Supervised  learning  has  become  a  prominent
approach in machine learning. It involves learning
the  input-output  relationship  of  a  system  estab-
lished  from  an  input-output  training  sample.  The
input-output  training  sample  is  known  as  labeled
training data or supervised data. This system is also
called  learning  with  a  ‘teacher’  (8).  The  main
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purpose  of  supervised  learning  is  to  develop  an
artificial system that can learn from examples such
as  the  input-output  training  sample  and  make
predictions  of  the  output  based  on  the  input  not
given  in  the  training  set  (test  set)  (9).  Various
techniques  or  algorithms  exist  for  conducting
supervised  learning,  including  the  Decision  Tree
algorithm, Random Forest (RF), Naïve Bayes algo-
rithm  (NB),  Support  Vector  Machine  (SVM)  and
artificial neural network (ANN) (10).

Modelling  molecular  structure-properties  relation-
ships  using  ANN and SVM as  supervised  learning
starts with a selection topology index to represent
the  structure.  This  work  aims  to  look  into  the
applicability  of  the  topology  index  to  the  highest
occupied molecular orbital (HOMO) and the lowest
unoccupied  molecular orbital  (LUMO).  Here,  we
implement a modification of the moment index. The
moment topological index was initially introduced by
Dalfo et al. (11). However, the definition of ρ for its
further applications is not clearly stated. Chang et
al. have applied this index to biphenyl and polycyclic
hydrocarbons and extremal polyphenyl chains (12).
In this paper, we define the new value of ρ-moment
based on the degree of vertices. Using the neural
network-Graph theory and Support Vector Machine-
Graph theory approaches, the relationship between
the moment topology and electronic properties has
been a new understanding of electronic properties in
alkanes. 

2.  TOPOLOGY  INDEXES  AS  MOLECULAR
DESCRIPTORS

2.1 Molecular Descriptor using Degree Indexes
The  Quantitative  Structure  Properties  Relationship
(QSPR) model is an important tool for chemical and
biological  disciplines.  It  assists  in  analyzing  the
physical  and  chemical  properties  of  molecular
structure.  Quantitative  structure-property  relation-
ship analysis (QSPR) is a method that relates the
chemical,  biological,  and  physical  activities  of  a
molecular compound.  The  topological index  is  an
example of a molecular descriptor that uses graph
theory.  Vertex  points  represent  the  atoms  in  the
chemical structure. At the same time, the chemical
bonding is described by the edge (13).  The degree
based on the vertex is the most widely employed as
a  chemical  descriptor  (14,  15). If  G(V,  E)  is
represented as the molecular graph with vertex and
edge set, the connectivity index is given by Equation
1.

χ (G)= ∑
v ,u∈V (G )

1

√dv du

(Eq. 1)

where dv and du are the degrees of vertex u and v,
respectively.  Zhou  and  Trinajstić modified  the
connectivity  index  by  replacing  the  multiplication
product  with  the  summation  product  (16).  This

index is also known as the sum connectivity index.
The sum connectivity index is given by Equation 2.

χ+(G)= ∑
v, u∈V (G)

1

√dv+du

(Eq. 2)

Additionally,  Estrada has changed the connectivity
index  by  taking  into  account  the  degree  of  the
vertex and edge. The equation that describes this
index,  which  is  also  known  as  the  atom–bond
connectivity (ABC), is as follows: (Equation 3) (17). 

χABC(G)= ∑
v ,u∈V (G )√dv+du– 2

dv du

(Eq. 3)

The geometry-arithmetic index, or the GA index, is 
another vertex degree-based topological index. Its 
definition may be found as Equation 4 (18).

GA (G)= ∑
v , u∈V (G)

√dv du

(dv+du)/2
(Eq. 4)

where √dv du  represents the geometry means, 

and the denominator (dv+du)/2  represents the 
arithmetic mean of end-vertex degrees of the edge. 

2.2  Molecular  Descriptor  using  Distance
Indexes
A  distance-based  molecular  topology  index  is
another method for analyzing topological molecular
structures. The Wiener index is the earliest distance
index that has been introduced. The Wiener index of
graph  G  is  defined  as  the  sum  of  all  distances
between  pairs  of  the  graph’s  vertices  given  by
Equation 5. 

W (G)=1
2 ∑

v∈V (G )

d (u , v ) (Eq. 5)

where  d  (u,v)  is  the  shortest  distance  in  G.  The
Wiener  index  has  been  improved,  known  as  the
hyper-Wiener index, and its definition is as follows:
(Equation 6)(19) 

WW (G)=1
2 ∑

v∈V (G )
(d (u , v )+ [d (u , v )]2) (Eq. 6)

The reciprocal of the distance between vertex u and
v also  has  been  introduced  and  defined  in  an
Equation 7.

H (G)= ∑
v∈V (G )

1
d (u , v)

(Eq. 7)

The index in Equation 7 is also known as the Harary
index  (20).  In  endeavoring  to  relate  graphic
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structures with the chemical structure, Parikh word
representable  graphs  (PWRGs)  were  developed
(21).  These graphs were based on the Wiener or
Harary index calculations.

2.  Three  Combinations  between  Degree  and
Distance indexes
The degree and distance indexes can be combined
into  new  topological indexes.  The  adjacency  (A),
degree  (v),  and  distance  matrices  have  been
employed  in  the  establishment  of  the  Molecular
Topological index  (MTI  index),  which  is  based  on
matrix algebraic operations. The index is simplified
using the following mathematical equation (22):

MTI=∑ v (D+A ) (Eq. 8)

The  Balaban  index  promises  to  be  an  extremely
helpful  molecular  descriptor  with  appealing
properties (23). Balaban index, J = J [G (V, E)], is
calculated  using  the  average-distance  sum
connectivity and defined as Equation 9:

J=q∑
ij

1

(D İ D j )
1/2

(Eq. 9)

where q is the number q of vertex adjacencies, and
Di is the distance sum of  G (V, E) (23). While Ren
has  combined  the  distance  and  degree  of  the
molecular graph to create a new index known as the
Xu index (24). Xu index is defined as Equation 10.

Xu=n log(∑
n

i

v i si
2/∑

n

i

v i si) (Eq. 10)

where si is the distance sum of G (V, E) and vi is the
sum vertex-degree matrix of G (V, E).

3. METHOD OF CALCULATION

3.1 Topology Indices As The Input Data

3.1.1.Topology I: Moment Wiener Index
Dalfo et al.  (11) have defined a moment topology
index.  In  this  paper,  the  value  of  ρ (moment
constant)  determines  the  weights  between  the
vertices. We define a new moment topological index
based  on  the  degree  of  vertices.  The  moment
Wiener indices is defined as follows:  
        

DD1(G)=1
2∑ijÎG

(ui+u j)(d ij) (Eq. 11a)

DD2(G)=1
2∑ijÎG

(ui⋅u j)(dij ) (Eq. 11b)

DD3(G)=1
2∑ijÎG|

u i−u j|(d ij) (Eq. 11c)

DD4 (G)=1
2∑ijÎG √ui

2+u j
2(d ij) (Eq. 11d)

where dij is the shortest distance between vertices i
and j. The numerical value of ui and uj is the degree
of vertex i and j.
 
3.1.2 Topology II: Moment Harary indices
The Harary index of a graph  G (V, E)  is based on
reciprocal distance and can be attained as the half-
sum of all reciprocal distance elements (25). A new
moment Harary indices is given by equation (12). 

HH 1(G)=1
2∑ijÎG (ui+u j )(d ij

-1) (Eq. 12a)

HH 2(G)=∑
ijÎG

(ui⋅u j)(d ij
-1) (Eq. 12b)

HH 3(G)=1
2∑ijÎG|

u i−u j|(d ij
-1)  (Eq. 12c)

HH 4 (G)=1
2∑ijÎG √ui

2+u j
2(d ij

-1)  (Eq. 12d)

3.1.3 Topology III: Moment Balaban indices. 
The  Balaban  index  is  also  called  the  average-
distance  sum  connectivity  (23).  The  moment
Balaban  indices  is  defined  as  the  moment  of
average-distance sum connectivity, that is:

JJ 1(G)=q∑
ijÎG

1

√D 1iD 1 j

(Eq. 13a)

JJ 2(G)=q∑
ijÎG

1

√D 2i D2 j

(Eq. 13b)

JJ 3(G)=q∑
ijÎG

1

√D3 iD 3 j

(Eq. 13c)

JJ 4 (G)=q∑
ijÎG

1

√D 4i D 4i

(Eq. 13d)

where q is the number q of vertex adjacencies. The
value  of  D1,  D2,  D3  and  D4  correspond  to  the
average  row  for  the  moment  distance

(ui+u j)d ij ,(u i⋅u j)d ij ,|ui−u j|d ij ,and (√ui
2+u j

2)d ij

,respectively.  The  computational  algorithm  for
calculating  Moment-Wiener,  Harary  and  Balaban
index is given in the appendix.
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3.2 Machine learning modeling 
In  the  supervised  machine  learning-Graph  theory
approach,  the  molecular  descriptors  were
normalized according to the equation (14). 

Ii=
I x−Imin

Imax – Imin

 (Eq. 14)

where  Ix unnormalized  input  data, Imax is  the
maximum  value  of  the  sample,  and Imin is  the
minimum value of value of the sample. After that,
the main dataset is split into training and test set.
The main dataset is  then subjected to a machine
learning model: artificial neural network and support
vector  machine.  The  machine  learning  model
performance  was  measured  using  RMSE,  which
reflects the model’s absolute fit and how near the
predicted values  are  to  the actual  data points.  It
provides  an  objective  depiction  of  the  model’s
predicted  accuracy.  RMSE  was  determined  by
applying the Equation 15.

RMSE=√1n∑i=1
n

( y ’− y)2 (Eq. 15)

Where  n is  the  number  of  data,  y is  the
experimental  value,  and  y‘  is  the  prediction
(calculated)  value.  The  average  relative  error  is
calculated  as  the  average  of  the  prediction’s
absolute divergence from the actual  value divided
by the actual value.

RE=
|y ’− y|

y
 (Eq. 16)

The  correlation  coefficient  r was  computed  using
Equation 17:
   

r=
n∑ ( y⋅y ’) – (∑ y )(∑ y ’ )

√n∑ ( y2)– (∑ y)
2
– (∑ y ’)

2
(Eq. 17)

where  y and  y‘ is  the experimental  and predicted
value, respectively. 

3.2.1 Artificial neural network (ANN) 
Artificial  neural  networks (ANN)  are a  machine-
learning  approach  that  the  models  of  biological
neural  networks  inspire.  In  an  artificial  neural
network,  the  information  processing  element

consists of several artificial neurons. In the present
work, the feedforward forward neural network has
been  used.  ANN  utilizes  supervised  learning
methods during the learning or training process. The
learning process occurs when each target point is
used  in  the  training  set.  The  architecture  of  this
work is given in Figure 1. The architecture of ANN
consists  of  an input  layer,  a  hidden layer,  a  bias
unit,  and  an  output  layer.  The  input  layer  is  the
input numerical data from the topological index. The
hidden layer is the intermediate layer between the
input  and  layer.  The  hidden  layer  analogy  in  an
artificial  neural  network  can  be  compared  to a
collection of neurons. The activation function  used
to train the ANN is applied to the hidden layer.  In
this study, we use the sigmoidal function  1 / (1 +
e-x) for this calculation. The bias units were attached
to  a  hidden  layer.  The  final layer  of  the  ANN
architecture  is  referred  to  as  the  output  layer  or
output  nodes.  The  conditional  mean  of  output
requires  the  knowledge  of  the  joint  probability
density function of the random variables output and
input layers. The learning rate in this calculation is
0.01.

3.2.2 Support Vector Machine (SVM)
The SVM method is a learning algorithm tool used
for  classification  and  regression.  A  non-linear
function  will  transform  the  input  data  into  high-
dimensional  feature space. Then, the samples will
be  separated  by  drawing  a  decision  boundary
(hyperplane) as a linear classifier  (26). The linear
classifier  can  be  used  to  distinguish  between
“positive”  and  “negative”  attributes  from  the
independent variable. The training and test data are
split using the split data operator. The training data
set is exploited as a targeted point in the learning
process. The type of kernel function parameter in
this work uses the inner dot product. The machine
learning calculation was calculated using Rapidminer
Studio. 

3.3  Molecular  electronic  properties  (Learning
Input)
The  learning  data  or  input  is  needed  for  the
‘learning  process’  The  learning  and  testing  data
consist  of  the  Highest  Occupied  Molecular  Orbital
(HOMO)  and  Lowest  Unoccupied  Molecular  Orbital
(LUMO). The electronic properties of alkanes HOMO
and LUMO were calculated using the semi-empirical
self-consistent molecular MOPAC 2016. The detailed
method  for  this  calculation  can  be  found  in  the
literature (27).
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Figure 1. The architecture of ANN.

4. RESULTS 

4.1 The artificial neural network-Graph theory
approach
The neural network-Graph theory approach extracts
complex  patterns  of  molecular  structure  and
relationships  from  large  data  sets  to  predict  the
electronic  properties  of  alkanes.  The  moment
topology index for 139 alkanes structure is given in
Appendix  B.  The  moment  topology  indices  in  2D
structural  descriptors  were  more  effective  than in
3D  descriptors  (28).  In  ‘normal’  electronic
calculation, the usual procedure is to find an orbital
wave function suitable to the Schrödinger equation.
In the supervised learning approach, the relation of
molecular  descriptors  created  a  statistically
optimized relationship with HOMO and LUMO. The
relations  of  the  moment  topology  index  with  the
HOMO  and  LUMO  energies  as  given  in  the
supplementary table.  The correlation plots  for  the
calculated  (predicted  multilayer  perceptron  (MLP))
and observed combination topology index are given

in  Figure  2.  The  function  of  ANN  is  to  extract
classical quantum chemistry calculations to perform
molecular  orbital  calculations  efficiently,  incorpo-
rating  molecular  position  with  the  relation  of  the
topology index.

To evaluate whether the accuracy of our models is
sufficient for the electronic application, the data was
split into training and test sets. Table 1 presents the
accuracy results of  ANN training and test sets for
HOMO and  LUMO.  The  highest  root  mean  square
error (RMSE)  and relative error for HOMO are the
moment  Wiener  topology  indices.  These  were
followed  by  the  moment  Harary  and  Balaban
indices. The result also shows the same pattern for
LUMO. This indicates that moment Balaban indices
are the most stable descriptor for alkanes’ electronic
properties.  This  is  plausible  due  to  the  moment
Balaban  indices  as  descriptors  can  explain  the
molecular orbital basis of the saturated hydrocarbon
(29).  Furthermore,  adding  molecules  or  atoms
distorts the topology from the linear curve. 
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Figure 2: Correlation plots for observed versus calculated for (a) HOMO, (b) LUMO Moment Wiener
Indices ; (c) HOMO, (d) LUMO Moment Harary Indices and (e) HOMO, (f) LUMO, Moment Balaban Indices

respectively using ANN.
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Table 1: Results of neural network modeling using moment Wiener, Harary, and Balaban indices.

HOMOa) LUMO

Training set Test set Training set Test set

r RMSE RE r RMSE RE r RMSE re r RMSE RE

Moment Wiener 0.785 0.122 0.920 0.778 0.117 0.910 0.749 0.054 0.96 0.663 0.057 1.17

Moment Harary 0.889 0.091 0.640 0.834 0.097 0.770 0.841 0.048 0.91 0.711 0.057 1.14

Moment Balaban 0.947 0.067 0.470 0.900 0.077 0.54 0.883 0.041 0.75 0.729 0.049 0.89
a)RMSE, Root mean square error and RE, relative error. 
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Figure 3: Graph of molecular descriptor versus independent variable importance. 



Zabidi ZM, Zakaria NA, Alias AN. JOTCSA. 2024; 11(1): 137-148.  RESEARCH ARTICLE

Figure  3  shows  each  molecular  descriptor’s
contribution  to  HOMO  and  LUMO  energies.  DD3
shows the highest value of HOMO, followed by DD2.
However, DD1 and DD4 show a contribution of less
than  15%.  The  contribution  for  DD1  and  DD4  is
13.2%  and  12.5%,  respectively.  This  contradicts
with  LUMO energy,  where  DD1  contribute  100%.
While  DD2,  DD3  and  DD4  contribute  more  than
50%.  In  moment  Harary  indices,  HH2  shows  the
highest  contribution  for  HOMO,  followed  by  HH2,
HH3 and HH4. HH1 and HH4 significantly contribute
more  than  90%  of  LUMO  energy.  While  HH3
contribute 61.6%. HH2 contributes less than 40%,
which  is  36.6%.  Meanwhile,  for  the  moment,
Balaban indices JJ1 and JJ2 show a contribution of
more than 90%. While JJ2 contributes 48.5% and JJ
contributes 11.5%. JJ4 contributes 100% for LUMO
energy, followed by JJ3 (53.3%), JJ2 (28.9%) and
JJ1 (18%).

4.2 The Support Vector Machine-Graph Theory
Approach
The Support Vector Machine-Graph theory approach
is  to  model  complex  non-linear  relationships  of
molecular  structure  from suitable  kernel  function.
The model produced by the support vector depends
on  the  subset  of  training  data  to  predict  the
electronic properties of  the alkanes molecule.  Our
model  consists  of  a  support  vector  machine  task
trained  on  electronic  properties.  The  optimized

relation of the molecular descriptor with HOMO and
LUMO  energy  was  created  statistically  via  the
applied  test  model.  The  relations  of  the  moment
topology index with the HOMO and LUMO energies
as given in the supplementary table. The correlation
plots  for  the  calculated  and  observed  HOMO and
LUMO  energy  for  the  combination  of  topology
indices  is  given in  Figure 3.  The correlation plots
assess  the  performance  of  the  molecular  graph
represented from the perspective of projection to a
very  high-dimensional  space  via  the  linear  kernel
classification.  This  modelling  is  capable  of
appertaining the molecular structure with electronic
properties. 

SVM  training  and  applying  the  model  resulted  in
models showing slightly higher prediction accuracy
than  the  ANN  (Table  2).  The  lowest  root  means
square  error  (RMSE)  and  relative  error  (RE)  for
HOMO and LUMO is the moment Balaban topology
indices. These are followed by the moment Harary
and  Wiener  indices.  This  indicates  that  moment
Balaban  index  shows  the  highest  stability.  The
difference  between  the  RMSE  and  RE  values  for
each of these indices is due to the classification of
the dataset via SVM from the molecular indices. The
smallest  value  for  all  molecule  descriptors  indices
indicates that the SVM can correlate with HOMO and
LUMO energy. 
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 Figure 3: Correlation plots for observed versus calculated for (a) HOMO, (b) LUMO Moment
Wiener Indices ; (c) HOMO, (d) LUMO Moment Harary Indices, and (e) HOMO, (f) LUMO Moment

Balaban Indices respectively using SVM.

Table 2: Results of Support Vector Machine Using Moment Wiener, Harary, and Balaban Indices.

HOMOa) LUMO

Training set Test set Training set Test set

r RMSE RE r RMSE RE r RMSE RE r RMSE RE
Moment 
Wiener 0.69 0.14 1.03 0.641 0.139 0.019 0.640 0.061 0.95 0.703 0.046 0.92
Moment 
Harary 0.89 0.089 0.60 0.821 0.100 0.80 0.768 0.051

0.8
0.75 0.043

0.91

Moment 
Balaban

0.947 0.062 0.42 0.904 0.081 0.58 0.830 0.044 0.79 0.728 0.044 0.87
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Figure 4: Molecular descriptor Independent variable attribution weight.

The  graph  of  molecular  descriptor  independent
variable  attribution  weight  to  HOMO  and  LUMO
energy is shown in Figure 4. DD3 shows the positive
and  the  highest  value  for  the  HOMO  energy  of
moment Wiener. This is followed by DD1. DD2, and
DD4  showing  negative  attribution  weight.  The
positive attribution weight for LUMO energy is DD2
and DD3.  At  the same time,  DD1 and DD4 have
negative  attribution  weights.  In  moment  Harary
indices, HH2, HH3 and HH4 positively contribute to
HOMO.  Contrary  to  HH1,  which  shows  negative
attribution weight. HHH1 and HH2 show a negative
contribution.  Finally,  Balaban  indices  JJ1,  JJ2  and
JJ3 show the positive attribution for HOMO energy
and vice versa for JJ2. At the same time, only JJ2
shows  positive  attribution  for  LUMO  energy.  The
variation  of  attribution  weight  indicators  to
classification  (30).  The effects of attribution weight
are obtained from the similarity of the data features
of the molecular topology indices. 

5. DISCUSSION 

The HOMO and LUMO energies reflect the electronic
properties  of  saturated  hydrocarbon  of  alkanes.
Alkane is composed of that sigma (σ)-bonds which
explain the behavior of electrons in the molecular
structure. This bonding is responsible for C – H bond
and basic  framework C – C bonds. The electronic
properties  of  the  molecular  structure  suggest  an
interpretation  in  terms  of  the  localization  of
electrons. Each molecule has its appropriate energy
based  on  the  position  of  atoms  to  form  the
molecules. In the topological approach, the indices

are calculated from suppress-hydrogen, which can
be related to the sharing of the electron-induced by
the  σ-bonds.  The  topology  indices  lead  to  the
fundamental  concept,  which  is  well-known  in
chemistry,  that  is,  the  octet  rule.  The  octet  rule
refers to the tendency of atoms to combine so that
each atom has eight electrons in the valence shell.
However,  we  need  to  consider  the  correlation  of
electrons  in  electronic  calculation.  Therefore,  the
‘moment’ topological approach has been introduced
with the value ρ weight between the vertices gives
all considerations from the molecular calculation. In
the moment topology approach, both properties of
graph molecule, that is, degree and distance, have
been considered. The distance and derivative of the
distance matrix represented the molecule. While ρ
weight of ui + uj, ui ∙ uj and |ui - uj| are analogies to
σ-conjugation,  orbital  overlapping  or  Coulomb

descriptor(31-33).  In comparison,  √(uu
2+uv

2)  is
an  analogy  with  elementary  geometry  (using
Euclidean metrics) (7). The supervised learning can
correlate  between  localized  electrons  through  the
whole  molecule  using  topological indices  as  a
molecular  descriptor.  In  this  work,  the  inductive
supervise learning approach requires the functional
relationship of topology indices that to be modeled.
The  supervised  learning  approach  provides  an
improvement in molecular orbital calculation via the
data splitting or partition in systematical modeling
(learning experience by the machine) (34, 35). The
sampling training data was applied to test the data
set  developing high accuracy in HOMO and LUMO
energies (see Tables 1 and 2). SVM training resulted
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in  models  showing  slightly  higher  prediction
accuracy than the ANN. The ANN system, in some
cases, fails in non-linear classification. Therefore, in
this  finding,  the  chosen  descriptors  and  learning
system are vital; it is the set of how molecular has
been assigned to be modeled with the topological
orbital.  The electronic properties of alkanes based
on  Zagreb  and  Sombor  descriptors  show  low
accuracy compares with current works (36). We also
find  that  the  Zagreb  and  Sombor  indices  are
inadequate to assign as descriptors to the electronic
structures of alkanes.  

6. CONCLUSION

We have introduced a supervised learning model for
predicting  HOMO  and  LUMO  energies  of  alkanes
based  on  training  artificial  neural  networks  and
support vector machines. A new moment topology
approach  has  been  introduced  as  molecular
descriptors  by  taking  consideration  from  the
molecular  structure  perspective.  The  sampling
training  data  and  applied  to  test  the  data  set,
developing  high  accuracy  in  electronic  properties.
The  low  sum  of  square  error  and  relative  error
shows  the  outperformance  supervise  learning
modelling  to  the  HOMO  and  LUMO  energies  of
alkanes.  SVM training resulted in  models  showing
slightly  higher  prediction  accuracy  than  the  ANN
systems. We also find that the chosen descriptors
and learning system are of the vital importance, it is
the set of how molecular has been assigned to be
model with the topological orbital.
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9. APPENDIX

Algorithm for calculating Molecular topology index. 

Step 1: Start
Step 2: Define distance Matrix D
Step 3: Calculate the adjacent Matrix A

3.1 aij = 1 if di,j = 1
3.2 aij = 0 if else

Step 4: Calculate the degree matrix V  ∑←  A<i>

Step 5: Calculate elements of ki matrix
5.1 k1  ← vi + vj

5.2 k2  ← vi ∙ vj

5.3 k3  ← |vi - vj |
5.4 k4  ← [vi

2 + vj
2
 ]1/2

Step 6: Get Moment Wiener and Balaban Index

6.1 Multiply elements kij with elements 
Dij 

6.2 Sum all elements divided by 2
6.3   Output DD1, DD2, DD3 and DD4 index
6.4   Calculate the average-distance sum 

connectivity from DD1, DD2, DD3 and DD4 matrix
6.5   Output JJ1, JJ2, JJ3 and JJ4 index

Step 7: Define inverse matrix H
7.1  hij = 1/ dij 
7.2  hii  = dii 

Step 8: Get Moment Harary Index 
8.1   Multiply elements kij with elements Hij 
8.2   Sum all elements divided by 2
8.3   Output HH1, HH2, HH3 and HH4 index

Step 9: Stop 
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