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Abstract. In this study, we first define the Smarandache curves derived from

the Frenet vectors and the Darboux vector of any curve. Then, we construct
new ruled surfaces along these Smarandache curves with the direction vec-

tors obtained from the Frenet vectors and the Darboux vector, and give the

equations of these surfaces. In addition, we calculate the Gaussian and mean
curvatures of these surfaces separately and present the conditions to be min-

imal and developable for these surfaces. Finally, as an example, we obtain

ruled surfaces whose base curves are Viviani’s curves and plot the graphics of
these surfaces.

1. Introduction

A surface is defined to be the image of a function with two real variables in three-
dimensional space. Surfaces can be characterized by their curvatures and engaged
accordingly to many fields, especially in architecture and engineering. Research on
the surface curvature went through various stages starting from Ancient Greece.
After the studies of Descartes, Kepler, Fermat and Huygens, it gained momentum
with the calculations developed by Newton and Leibniz in the 17th century. The
curvature of curves and surfaces is an important topic in differential geometry,
today. The method of calculating the curvature of a surface was defined by Gauss
in the 19th century and therefore named Gaussian curvature. Gaussian curvature
is related to the dimension of the surface. The developability of a surface depends
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on its Gaussian curvature. A surface with zero Gaussian curvature at every point
is known to be a developable surface. Since the average curvature of the surface is
a ratio, it is independent of the size of the surface. Surfaces with a mean curvature
of zero at every point are minimal surfaces. Therefore, it is one of the most used
surfaces in architectural designs. There are numerous studies on surfaces, [5, 16,
17, 22, 24]. In surface theory, there are special surfaces of which one is named the
ruled surface. A ruled surface is formed by infinitely many lines that move along a
given curve. The basics related to this type of surfaces are given in [7,23,25]. And
there are various other studies on ruled surfaces, [2, 3, 10, 12, 13, 27, 33, 36]. On the
other hand, the theory of curves also occupies an important place in differential
geometry. There are many studies on various special curves, [7–9,11,14,15,21]. In
addition, studies with Smarandache curves are available in [1,4,6,24,26–31,34,35].
Recently, in [18–20], generating the way of new ruled surfaces have been given by
exploiting the idea of Smarandache geometry and using the Frenet, the Darboux
or the alternative frame. In the light of all these informations in this study, we
obtain the ruled surfaces from the direction vector obtained from the Frenet and
Darboux vectors of any curve and from the Smarandache base curve obtained in
the same way. And we study some properties of these surfaces. Finally, we show
all these results on an example and plot the graphs of the surfaces. This study is
another application of our previous paper: Smarandache based ruled surfaces with
the Darboux vector according to Frenet frame in E3, [32].

2. Preliminaries

α : I → E3 be a unit speed regular curve. The Frenet frame {T,N,B}, the
curvature κ, the torsion τ and the Frenet derivative formulae of the curve α are
given by

T = α′, N =
α′′

∥α′′∥
, B = T ∧N, κ = ∥α′′∥ , τ = ⟨N ′, B⟩ ,

and

T ′ = κN, N ′ = −κT + τB, B′ = −τN.

here T , N and B are the tangent, normal and binormal vectors of α, respectively, [7].
Also ⟨, ⟩ is the inner product, ∥ ∥ is the norm and ∧ is the vectorial product functions
in E3, [7]. The Darboux vector corresponding to the Frenet frame {T,N,B} is
defined by W = τT + κB . Thus, we write the unit form of Darboux vector as

C = sinω T + cosωB,

where ∠ (B,W ) = ω and
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cosω =
κ√

κ2 + τ2
, sinω =

τ√
κ2 + τ2

,

ω′ =
( τ
κ

)′
(
1 +

τ2

κ2

)
,

(1)

[6]. On the other hand, a unit vector based on the Frenet frame elements can be
defined by

γ =
aT + bN + cB√
a2 + b2 + c2

, (2)

where a, b, c are some real valued functions. For ∀s ∈ I, the locus of the endpoints
of the vector γ defines a differentiable curve. If γ is taken to be the position vector
then the generated curve is called as Smarandache curve, [25]. A ruled surface is
defined as a one parameter family of lines and it has the form

X (s, v) = α(s) + vr (s) , (3)

here α(s) is the base curve, r (s) is the direction vector of the ruled surface X (s, v)
and v is any real number, [9]. The normal vector field, the Gaussian and the mean
curvatures of X (s, v) are given by the relations [7]

NX =
Xs ∧Xv

∥Xs ∧Xv∥
, (4)

K =
eg − f2

EG− F 2
, H =

Eg − 2fF + eG

2 (EG− F 2)
, (5)

respectively. Here, the coefficients of the first and the second fundamental forms
are defined by [7]

E = ⟨Xs, Xs⟩ , F = ⟨Xs, Xv⟩ , G = ⟨Xv, Xv⟩ , (6)

e = ⟨Xss, NX⟩ , f = ⟨Xsv, NX⟩ , g = ⟨Xvv, NX⟩ . (7)

3. Another Application of Smarandache Based Ruled Surfaces with
the Darboux Vector According to Frenet Frame in E3

Let us remind the given expression (2). We consider some special cases to gen-
erate new kind of Smarandache curves by choosing appropriate a, b, c functions:

• For a = 1 + sinω, b = 0, c = cosω, we define TC– Smarandache curve

γ1 =
T + C√
2 + 2 sinω

, whose position vector is γ =
T + C√
2 + 2 sinω

,
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• For a = sinω, b = 1, c = cosω, we define NC– Smarandache curve

γ2 =
N + C√

2
, whose position vector is γ =

N + C√
2

,

• For a = sinω, b = 0, c = 1 + cosω, we define BC– Smarandache curve

γ3 =
B + C√
2 + 2 cosω

, whose position vector is γ =
B + C√
2 + 2 cosω

.

By this study, we define and consider the ruled surfaces where the base curve is
one of these Smarandache curves and the generator line is one of the given position
vectors. For each surface, we calculate the corresponding the Gaussian and mean
curvatures.

Definition 1. Let’s define a ruled surface generated by continuously moving the
vector T + C along the TC– Smarandache curve. Thus, we provide its parametric
form as

Σ (s, v) =
T + C√
2 + 2 sinω

+ v
T + C√
2 + 2 sinω

,

Σ (s, v) =
1 + v√

2

(√
1 + sinωT +

√
1− sinωB

)
.

The first and the second partial differentials of Σ (s, v) are

Σs =
1 + v

2
√
2

 ω′√1− sinωT + 2
(
κ
√
1 + sinω − τ

√
1− sinω

)
N

−ω′√1 + sinωB

 ,

Σv =
1√
2

(√
1 + sinωT +

√
1− sinωB

)
,

Σvv = 0,

Σsv =
1

2
√
2

 ω′√1− sinωT + 2
(
κ
√
1 + sinω − τ

√
1− sinω

)
N

−ω′√1 + sinωB

 ,

Σss =
1 + v

4
√
2



(
(2ω′′ + 4τκ)

√
1− sinω −

(
ω′2 + 4κ2

)√
1 + sinω

)
T

+
(
(2κω′ − 2τ ′)

√
1− sinω + (2κ′ + 2τω′)

√
1 + sinω

)
N

+
(
(−2ω′′ + 4τκ)

√
1− sinω −

(
ω′2 + 4τ2

)√
1 + sinω

)
B

 .
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And the vectorial product of the vectors Σs , Σv and its norm are

Σs ∧ Σv =
1 + v

2

((√
κ2 + τ2 − τ

)
T − ω′N − κB

)
,

∥Σs ∧ Σv∥ =
1 + v

2

√
2κ2 + 2τ2 + ω′2 − 2τ

√
κ2 + τ2.

If we denote the normal vector field of the surface by NΣ, then from the expression
(4), we have

NΣ =

(√
κ2 + τ2 − τ

)
T − ω′N − κB(

ω′2 + 2κ2 + 2τ2 − 2τ
√
κ2 + τ2

) 1
2

.

From the expressions (6) and (7), we compute the coefficients of the first and the
second fundamental forms as

EΣ =
(1 + v)

2

4

(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

)
,

FΣ = 0, GΣ = 1

and

eΣ =



(
(2ω′′ + 4τκ)

(√
κ2 + τ2 − τ

)
− ω′ (2κω′ − 2τ ′)− κ (−2ω′′ + 4τκ)

)
.
√
1− sinω

−
((

ω′2 + 4κ2
) (√

κ2 + τ2 − τ
)
+ ω′ (2κ′ + 2τω′)− κ

(
ω′2 + 4τ2

))
.
√
1 + sinω


4(1 + v)

−1(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

) 1
2

,

fΣ =
ω′ (√κ2 + τ2 + τ

)√
1− sinω − κω′√1 + sinω

4(1 + v)
−1(

ω′2 + 2κ2 + 2τ2 − 2τ
√
κ2 + τ2

) 1
2

,

gΣ = 0,
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respectively. Finally, by using the expression (5), we get the Gaussian and the mean
curvatures

KΣ = −

[
ω′ (√κ2 + τ2 + τ

)√
1− sinω − κω′√1 + sinω

2
(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

) ]2

,

HΣ =



(
(2ω′′ + 4τκ)

(√
κ2 + τ2 − τ

)
− ω′ (2κω′ − 2τ ′)− κ (−2ω′′ + 4τκ)

)
.
√
1− sinω

−
((

ω′2 + 4κ2
) (√

κ2 + τ2 − τ
)
+ ω′ (2κ′ + 2τω′)− κ

(
ω′2 + 4τ2

))
.
√
1 + sinω


2
(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

) 3
2

,

respectively.

Corollary 1. If α(s) is a general helix, then Σ is a developable surface.

Definition 2. Let’s define a ruled surface generated by continuously moving the
vector N + C along the TC– Smarandache curve. Thus, we provide its parametric
form as

∆(s, v) =
1√

2 + 2 sinω
(T + C) +

v√
2
(N + C) ,

∆(s, v) =
1√
2

[(√
1 + sinω + v sinω

)
T + vN +

(√
1− sinω + v cosω

)
B
]
.

The first and the second partial differentials of ∆ (s, v) are

∆s =
1

2
√
2
(xT + yN + zB) ,

∆v =
1√
2
(sinωT +N + cosωB) ,

∆vv = 0,

∆sv =
1√
2

(
(−κ+ cosω)T +

(
κ
√
1 + sinω − τ

√
1− sinω

)
N + (τ − sinω)B

)
,

∆ss =
1

2
√
2
((x′ − yκ)T + (xκ− zτ + y′)N + (yτ + z′)B) .
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And the vectorial product of the vectors ∆s , ∆v and its norm are

∆s ∧∆v =
1

4
((−z + y cosω)T − (x cosω − z sinω)N + (x− y sinω)B) ,

∥∆s ∧∆v∥ =
1

4

(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

,

where the coefficients x, y, z are

x = ω′√1− sinω + 2v (−κ+ cosω) ,

y = 2κ
√
1 + sinω − 2τ

√
1− sinω,

z = −ω′√1 + sinω + 2v (τ − sinω) .

Thus, from the expression (4), the normal of the surface N∆ is given as

N∆ =
(−z + y cosω)T − (x cosω − z sinω)N + (x− y sinω)B(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

.

By following the expressions (6) and (7), the coefficients of the first and the second
fundamental forms are

E∆ =
1

8

(
x2 + y2 + z2

)
,

F∆ =
1

4
(x sinω + y + z cosω) ,

G∆ = 1

and

e∆ =

 (x′ − yκ) (−z + y cosω)− (xκ− zτ + y′) (x cosω − z sinω)

+ (yτ + z′) (x− y sinω)


2
√
2
(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

,

f∆ =

 zκ+ xτ − z cosω − x sinω + y
(
1−

√
κ2 + τ2

)
− (x cosω − z sinω)

(
κ
√
1 + sinω − τ

√
1− sinω

)


√
2
(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

,

g∆ = 0,
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respectively. Finally, from the expression (5), the Gaussian and mean curvatures
are obtained as

K∆ = −

8

 zκ+ xτ + y
(
1−

√
κ2 + τ2

)
− (z cosω + x sinω)

− (x cosω − z sinω)
(
κ
√
1 + sinω − τ

√
1− sinω

)
2

(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
)2 ,

H∆=



(x′ − yκ) (−z + y cosω)− (xκ− zτ + y′) (x cosω − z sinω)

+ (yτ + z′) (x− y sinω)− zκ+ xτ − z cosω − x sinω

+y
(
1−

√
κ2 + τ2

)
(x sinω + y + z cosω)

+ (x cosω − z sinω) (x sinω + y + z cosω)
(
κ
√
1 + sinω − τ

√
1− sinω

)


(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 3

2

,

respectively.

Definition 3. Let’s define a ruled surface generated by continuously moving the
vector B + C along the TC–Smarandache curve. Thus, we provide its parametric
form as

Υ(s, v) =
1√

2 + 2 sinω
(T + C) +

v√
2 + 2 cosω

(B + C),

Υ(s, v) =
1√
2

[(√
1 + sinω + v

√
1− cosω

)
T +

(√
1− sinω + v

√
1 + cosω

)
B
]
.

If we assign p (s, v) =
√
1 + sinω + v

√
1− cosω and

q (s, v) =
√
1− sinω + v

√
1 + cosω, then we can rewrite the surface in a simple

form as

Υ (s, v) =
1√
2
(pT + qB) .

Next, the first and the second partial differentials of Υ (s, v) are
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Υs =
1√
2
(psT + (κp− τq)N + qsB) ,

Υv =
1√
2
(pvT + qvB) ,

Υvv = 0,

Υss =
1√
2

 (
pss − κ2p+ τκq

)
T + (psκ− qsτ + (κp− τq)s)N

+
(
qss + κτp− τ2q

)
B

 ,

Υsv =
1√
2
(psvT + (κpv − τqv)N + qsvB) .

And the vectorial product of the vectors Υs , Υv and its norm are

Υs ∧Υv =
1

2
((κpqv − τqqv)T + (qspv − psqv)N − (κppv − τqpv)B) ,

∥Υs ∧Υv∥ =
1

2

√
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
.

From the expression (4), the normal of the surface NΥ is

NΥ =
qv (κp− τq)T + (pvqs − psqv)N − pv (κp− τq)B√

(κp− τq)
2
(pv2 + qv2) + (pvqs − psqv)

2

From the expressions (6) and (7) to compute the coefficients of fundamental forms,
we get

EΥ =
1

2

(
(ps)

2
+ (κp− τq)

2
+ (qs)

2
)
,

FΥ =
1

2
(pspv + qsqv) ,

GΥ = 1
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and

eΥ =

 (κp− τq)
(
qv

(
pss − κ2p+ τκq

)
− pv

(
qss + κτp− τ2q

))
+(pvqs − psqv) (psκ− qsτ + (κp− τq)s)


√
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
,

fΥ =
(κp− τq) (qvpsv − pvqsv) + (pvqs − psqv) (κpv − τqv)

√
2

√
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
,

gΥ = 0,

respectively. Finally, from the expression (5), we obtain the Gaussian and mean
curvatures as

KΥ = −

[
(κp− τq) (qvpsv − pvqsv) + (pvqs − psqv) (κpv − τqv)

(κp− τq)
2
(pv2 + qv2) + (pvqs − psqv)

2

]2

,

HΥ =


(κp− τq) (qvpss − pvqss − (κp− τq) (κqv + τpv))

+ (pvqs − psqv) (2psκ− 2qsτ + κ′p− τ ′q)

− (κp− τq) (pspv + qsqv) (psvqv − qsvpv + pvqs − psqv)


√
2
(
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
) 3

2

.

Definition 4. Let’s define a ruled surface generated by continuously moving the
vector T + C along the NC– Smarandache curve. Thus, we provide its parametric
form as

χ (s, v) =
1√
2
(N + C) +

v√
2 + 2 sinω

(T + C),

χ (s, v) =
1√
2

[(
sinω + v

√
1 + sinω

)
T +N +

(
cosω + v

√
1− sinω

)
B
]
.

If we assign m (s, v) = sinω+ v
√
1 + sinω and r (s, v) = cosω+ v

√
1− sinω , then

we can rewrite the surface in a simple form as

χ (s, v) =
1√
2
(mT +N + rB) .
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Next, the first and second partial differentials of χ (s, v) are

χs =
1√
2
((ms − κ)T + (mκ− rτ)N + (rs + τ)B) ,

χv =
1√
2
(mvT + rvB) ,

χvv = 0,

χsv =
1√
2
(msvT + (mvκ− rvτ)N + rsvB) ,

χss =
1√
2


(
mss −mκ2 − κ′ + rκτ

)
T

+
(
2κms − 2τrs − κ2 − τ2 +mκ′ − rτ ′

)
N

+
(
rss +mτκ+ τ ′ − rτ2

)
B

 .

And the vectorial product of the vectors χs , χv and its norm are

χs ∧ χv =
1

2
(rv (mκ− rτ)T + (mv (rs + τ)− rv (ms − κ))N −mv (mκ− rτ)B) ,

∥χs ∧ χv∥ =
1

2

(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 1

2

.

From the expression (4), the normal of the ruled surface χ (s, v) is

Nχ =
rv (mκ− rτ)T + (mv (rs + τ)− rv (ms − κ))N −mv (mκ− rτ)B(

(mv (rs + τ)− rv (ms − κ))
2
+ 2(mκ− rτ)

2
) 1

2

.

From the expression (6) and (7, the coefficients of the first and the second funda-
mental forms are

Eχ =
1

2

(
(ms − κ)

2
+ (mκ− rτ)

2
+ (rs + τ)

2
)
,

Fχ =
1

2
(mv (ms − κ) + rv (rs + τ)) ,

Gχ = 1

and
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eχ =

 (mκ− rτ)
(
rv

(
mss −mκ2 − κ′ + rκτ

)
−mv

(
rss +mτκ+ τ ′ − rτ2

))
+(mv (rs + τ)− rv (ms − κ))

(
2κms − 2τrs − κ2 − τ2 +mκ′ − rτ ′

)


√
2
(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 1

2

,

fχ =
(mκ− rτ) (rvmsv −mvrsv) + (mv (rs + τ)− rv (ms − κ)) (mvκ− rvτ)

√
2
(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 1

2

,

gχ = 0,

respectively. Finally, from the expression (5), we compute the Gaussian and mean
curvatures as

Kχ = −

[
(mκ− rτ) (rvmsv −mvrsv) + (mv (rs + τ)− rv (ms − κ)) (mvκ− rvτ)

(mv (rs + τ)− rv (ms − κ))
2
+ 2(mκ− rτ)

2

]2

,

Hχ =



(mκ− rτ)

 rvmss − rvmκ2 − rvκ
′ + rvrκτ −mvrss

−mvmτκ−mvτ
′ +mvrτ

2


− (mκ− rτ) (rvmsv −mvrsv) (mvms − κmv + rvrs + rvτ)

+ (mvrs +mvτ − rvms + rvκ)
(
2κms − 2τrs − κ2 − τ2 +mκ′ − rτ ′

)
− (mvrs +mvτ − rvms + rvκ) (mvms −mvκ+ rvrs + rvτ)

. (mvκ− rvτ)


√
2
(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 3

2

.

Definition 5. Let’s define a ruled surface generated by continuously moving the
vector N +C along the NC– Smarandache curve. Thus, we provide its parametric
form as

P (s, v) =
N + C√

2
+ v

N + C√
2

,

P (s, v) =
1 + v√

2
(sinωT +N + cosωB) .
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Next, the first and the second partial differentials of P (s, v) are

Ps =
1 + v√

2
((−κ+ ω′ cosω)T + (τ − ω′ sinω)B) ,

Pv =
1√
2
(sinωT +N + cosωB) ,

Pss =
1√
2
(1 + v)

 (−κ+ ω′ cosω)
′
T −

(
κ2 + τ2 − ω′ (κ cosω + τ sinω)

)
N

+ (τ − ω′ sinω)
′
B

 ,

Psv =
1√
2
((−κ+ ω′ cosω)T + (τ − ω′ sinω)B) ,

Pvv = 0.

And the vectorial product of the vectors Ps , Pv and its norm are

Ps ∧ Pv =
(1 + v)

2
[(ω′ sinω − τ)T + (κ cosω + τ sinω − ω′)N + (ω′ cosω − κ)B] ,

∥Ps ∧ Pv∥ =
(1 + v)

2

√
(ω′ sinω − τ)

2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2
.

If we denote the normal vector of the surface by NP, then from the expression (4),
we get

NP =
(ω′ sinω − τ)T + (κ cosω + τ sinω − ω′)N + (ω′ cosω − κ)B√

(ω′ sinω − τ)
2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2
.

By using the expressions (6) and (7), the coefficients of the first and the second
fundamental forms are given as

EP =
1

2

(
(1 + v)

2
(
(−κ+ ω′ cosω)

2
+ (τ − ω′ sinω)

2
))

,

FP = 0,

GP = 1

and
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eP =

(1 + v)

 (ω′ cosω − κ)
′
(ω′ sinω − τ) + (τ − ω′ sinω)

′
(ω′ cosω − κ)

+(κ cosω + τ sinω − ω′)
2


√
2
(
(ω′ sinω − τ)

2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2
) 1

2

,

fP = 0,

gP = 0,

respectively. Finally, from the expression (5), the Gaussian and mean curvatures
are obtained as:

KP = 0,

HP =

 (√
2 (1 + v)

)−1
(−κ+ ω′ cosω)

′
(ω′ sinω − τ)

+(τ − ω′ sinω)
′
(−κ+ ω′ cosω) + (κ cosω + τ sinω − ω′)

2




(
κ2 + τ2 + ω′2 − 2ω′ (κ cosω + τ sinω)

)
.

√
(ω′ sinω − τ)

2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2


.

Corollary 2. The ruled surface P (s, v) is always developable.

Definition 6. Let’s define a ruled surface generated by continuously moving the
vector B +C along the NC– Smarandache curve. Thus, we provide its parametric
form as

δ (s, v) =
1√
2
(N + C) +

v√
2 + 2 cosω

(B + C) ,

δ (s, v) =
1√
2

[(
sinω + v

√
1 + cosω

)
T +N +

(
cosω + v

√
1− cosω

)
B
]
.

If we assign p∗ (s, v) = sinω+v
√
1 + cosω and q∗ (s, v) = cosω+v

√
1− cosω, then

we can rewrite the surface in a simple form as

δ (s, v) =
1√
2
(p∗T +N + q∗B) .

Next, the first and second partial differentials of δ (s, v) are
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δs =
1√
2
((−κ+ p∗s)T + (κp∗ − τq∗)N + (τ + q∗s )B) ,

δv =
1√
2
(p∗vT + q∗vB) ,

δvv = 0,

δsv =
1√
2
(p∗svT + (κp∗v − τq∗v)N + q∗svB) ,

δss =
1√
2

 (
−κ′ + p∗ss − κ2p∗ + τκq∗

)
T +

(
τ ′ + q∗ss + κτp∗ − τ2q∗

)
B

+
(
2κp∗s − 2τq∗s − τ2 − κ2 + κ′p∗ − τ ′q∗

)
N

 .

And the vectorial product of the vectors δs , δv and its norm are

δs ∧ δv =
1

2

 q∗v (κp
∗ − τq∗)T + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))N

−p∗v (κp
∗ − τq∗)B

 ,

∥δs ∧ δv∥ =
1

2

[(
q∗v

2 + p∗v
2
)
(κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
] 1

2

.

From the expression (4), we compute the normal of the surface denoted by Nδ as

Nδ =
q∗v (κp

∗ − τq∗)T + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))N − p∗v (κp
∗ − τq∗)B[

(q∗v
2 + p∗v

2) (κp∗ − τq∗)
2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
] 1

2

.

By the expressions (6) and (7), the coefficients of fundamental forms are given as

Eδ =
1

2

[
(−κ+ p∗s)

2
+ (κp∗ − τq∗)

2
+ (τ + q∗s )

2
]
,

Fδ =
1

2
[(−κ+ p∗s) p

∗
v + (τ + q∗s ) q

∗
v ] ,

Gδ = 1

and
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eδ =

 (κp∗ − τq∗)
[
q∗v

(
−κ′ + p∗ss − κ2p∗ + τκq∗

)
− p∗v

(
τ ′ + q∗ss + κτp∗ − τ2q∗

)]
+(p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

(
2κp∗s − 2τq∗s − τ2 − κ2 + κ′p∗ − τ ′q∗

)


√
2
(
(q∗v

2 + p∗v
2) (κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
) 1

2

,

fδ =
(q∗vp

∗
sv − p∗vq

∗
sv) (κp

∗ − τq∗) + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s)) (κp
∗
v − τq∗v)

√
2
(
(q∗v

2 + p∗v
2) (κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
) 1

2

,

gδ = 0,

respectively. Finally, from the expression (5), we compute the Gaussian and mean
curvatures as

Kδ = −2

[
(q∗vp

∗
sv − p∗vq

∗
sv) (κp

∗ − τq∗) + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s)) (κp
∗
v − τq∗v)

(q∗v
2 + p∗v

2) (κp∗ − τq∗)
2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2

]2

,

Hδ =



(κp∗ − τq∗)
[
q∗v

(
−κ′ + p∗ss − κ2p∗ + τκq∗

)
− p∗v

(
τ ′ + q∗ss + κτp∗ − τ2q∗

)]
+(p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

(
2κp∗s − 2τq∗s − τ2 − κ2 + κ′p∗ − τ ′q∗

)
− (q∗vp

∗
sv − p∗vq

∗
sv) (κp

∗ − τq∗) ((−κ+ p∗s) p
∗
v + (τ + q∗s ) q

∗
v)

− (p∗v (τ + q∗s )− q∗v (−κ+ p∗s)) (p
∗
v (−κ+ p∗s) + q∗v (τ + q∗s )) (κp

∗
v − τq∗v)


2−

1
2

[
(q∗v

2 + p∗v
2) (κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
] 3

2

.

Definition 7. Let’s define a ruled surface generated by continuously moving the
vector T + C along the BC– Smarandache curve. Thus, we provide its parametric
form as

η (s, v) =
1√

2 + 2 cosω
(B + C) +

v√
2 + 2 sinω

(T + C),

η (s, v) =
1√
2

[((√
1− cosω

)
+ v

(√
1 + sinω

))
T

+
((√

1 + cosω
)
+ v

(√
1− sinω

))
B
]
.

If we assign m∗ (s, v) =
(√

1− cosω + v
√
1 + sinω

)
and

n∗ (s, v) =
(√

1 + cosω + v
√
1− sinω

)
, then we can rewrite the surface in a simple
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form as

η (s, v) =
1√
2
(m∗ (s, v)T (s) + n∗ (s, v)B (s)) .

Next, the first and the second partial differentials of η (s, v) are

ηs =
1√
2
(m∗

sT + (κm∗ − τn∗)N + n∗
sB) ,

ηv =
1√
2
(m∗

vT + n∗
vB) ,

ηvv = 0,

ηss =
1√
2

 (
m∗

ss − κ2m∗ + τκn∗
s

)
T + (κ′m∗ − τ ′n∗

s + 2κm∗
s − 2τn∗

s)N

+
(
n∗
ss + κτm∗ − τ2n∗

s

)
B

 ,

ηsv =
1√
2
(m∗

svT + (κm∗
v − τn∗

v)N + n∗
svB) .

And the vectorial product of the vectors ηs , ηv and its norm are

ηs ∧ ηv =
1

2
(n∗

v (κm
∗ − τn∗)T + (n∗

sm
∗
v −m∗

sn
∗
v)N −m∗

v (κm
∗ − τn∗)B) ,

∥ηs ∧ ηv∥ =
1

2

(
(κm∗ − τn∗)

2 (
m∗

v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

.

By using the expression (4), the normal vector field denoted by Nη can be computed
as:

Nη =
n∗
v (κm

∗ − τn∗)T + (n∗
sm

∗
v −m∗

sn
∗
v)N −m∗

v (κm
∗ − τn∗)B(

(κm∗ − τn∗)
2 (

m∗
v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

.

From the expressions (6) and (7), the coefficients of fundamental forms can be given
as:

Eη =
1

2

(
ms

∗2 + ns
∗2 + (κm∗ − τn∗)

2
)
,

Fη =
1

2
(ms

∗mv
∗ + ns

∗nv
∗) ,

Gη = 1

and
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eη =

 (κm∗ − τn∗)
(
n∗
v

(
m∗

ss − κ2m∗ + τκn∗
s

)
−m∗

v

(
n∗
ss + κτm∗ − τ2n∗

s

))
+(n∗

sm
∗
v −m∗

sn
∗
v) (κ

′m∗ − τ ′n∗
s + 2κm∗

s − 2τn∗
s)


√
2
(
(κm∗ − τn∗)

2
(m∗

v
2 + n∗

v
2) + (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

,

fη =
(κm∗ − τn∗) (n∗

vm
∗
v −m∗

vn
∗
v)

√
2
(
(κm∗ − τn∗)

2
(m∗

v
2 + n∗

v
2) + (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

,

gη = 0,

respectively. Finally, from the expression (5), the Gaussian and mean curvatures
are obtained as

Kη = − 2(κm∗ − τn∗)
2
(n∗

vm
∗
v −m∗

vn
∗
v)

2(
(κm∗ − τn∗)

2 (
m∗

v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
)2 ,

Hη =


(κm∗ − τn∗)

[
n∗
v

(
m∗

ss − κ2m∗ + τκn∗
s

)
−m∗

v

(
n∗
ss + κτm∗ − τ2n∗

s

)]
+(n∗

sm
∗
v −m∗

sn
∗
v) (κ

′m∗ − τ ′n∗
s + 2κm∗

s − 2τn∗
s)

− (κm∗ − τn∗) (n∗
vm

∗
v −m∗

vn
∗
v) (m

∗
sm

∗
v + n∗

sn
∗
v)


2−

1
2

(
(κm∗ − τn∗)

2 (
m∗

v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 3

2

.

Definition 8. Let’s define a ruled surface generated by continuously moving the
vector N +C along the BC– Smarandache curve. Thus, we provide its parametric
form as

φ (s, v) =
1√

2 + 2 cosω
(B + C) +

v√
2
(N + C) ,

φ (s, v) =
1√
2

((√
1− cosω + v sinω

)
T + vN +

(√
1 + cosω + v cosω

)
B
)
.

If we assign µ (s, v) =
(√

1− cosω + v sinω
)
and ρ (s, v) =

(√
1 + cosω + v cosω

)
,

then we can rewrite the surface in a simple form as

φ (s, v) =
1√
2
(µT + vN + ρB) .
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Next, the first and second partial differentials of φ (s, v) are

φs =
1√
2
((µs − vκ)T + (κµ− τρ)N + (ρs + vτ)B) ,

φv =
1√
2
(µvT +N + ρvB) ,

φvv = 0,

φsv =
1√
2
((µsv − κ)T + (κµv − τρv)N + (ρsv + τ)B) ,

φss =
1√
2


(
µss − vκ′ − κ2µ+ τκρ

)
T

+
(
2κµs − 2τρs + κ′µ− τ ′ρ− vκ2 − vτ2

)
N

+
(
ρss + vτ ′ + τκµ− τ2ρ

)
B

 .

And the vectorial product of the vectors φs , φv and its norm are

φs ∧ φv =
1

2

 (ρv (κµ− τρ)− (ρs + vτ))T + (µv (ρs + vτ)− ρv (µs − vκ))N

+((µs − vκ)− µv (κµ− τρ))B

 ,

∥φs ∧ φv∥ =
1

2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

.

From the expression (4), the normal of the surface φ (s, v) denoted by Nφ can then
be given as:

Nφ =

 (ρv (κµ− τρ)− (ρs + vτ))T + (µv (ρs + vτ)− ρv (µs − vκ))N

+((µs − vκ)− µv (κµ− τρ))B


 (ρv (κµ− τρ)− (ρs + vτ))

2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

.
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The coefficients of first and second fundamental form are calculated by using the
expressions (6) and (7) as:

Eφ =
1

2

(
(µs − vκ)

2
+ (κµ− τρ)

2
+ (ρs + vτ)

2
)
,

Fφ =
1

2
(µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ)) ,

Gφ = 1

and

eφ =


(ρv (κµ− τρ)− (ρs + vτ))

(
µss − vκ′ − κ2µ+ τκρ

)
+((µs − vκ)− µv (κµ− τρ))

(
ρss + vτ ′ + τκµ− τ2ρ

)
+(µv (ρs + vτ)− ρv (µs − vκ))

(
2κµs − 2τρs + κ′µ− τ ′ρ− vκ2 − vτ2

)


√
2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

,

fφ =


(ρv (κµ− τρ)− (ρs + vτ)) (µsv − κ)

+ ((µs − vκ)− µv (κµ− τρ)) (ρsv + τ)

+ (µv (ρs + vτ)− ρv (µs − vκ)) (κµv − τρv)


√
2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

,

gφ = 0,

respectively. Finally, from the expression (5), we have the Gaussian and mean
curvatures as in the following:
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Kφ = −


(ρv (κµ− τρ)− (ρs + vτ)) (µsv − κ)

+ ((µs − vκ)− µv (κµ− τρ)) (ρsv + τ)

+ (µv (ρs + vτ)− ρv (µs − vκ)) (κµv − τρv)


2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2

2 ,

Hφ =



(ρv (κµ− τρ)− (ρs + vτ))
(
µss − vκ′ − κ2µ+ τκρ

)
+((µs − vκ)− µv (κµ− τρ))

(
ρss + vτ ′ + τκµ− τ2ρ

)
+(µv (ρs + vτ)− ρv (µs − vκ))

(
2κµs − 2τρs + κ′µ− τ ′ρ− vκ2 − vτ2

)
− (ρv (κµ− τρ)− (ρs + vτ))

. (µsv − κ) (µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ))

− ((µs − vκ)− µv (κµ− τρ)) (ρsv + τ)

. (µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ))

− (µv (ρs + vτ)− ρv (µs − vκ)) (κµv − τρv)

. (µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ))


√
2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


3
2

.

Definition 9. Let’s define a ruled surface generated by continuously moving the
vector B + C along the BC– Smarandache curve. Thus, we provide its parametric
form as

λ (s, v) =
B + C√
2 + 2 cosω

+ v
B + C√
2 + 2 cosω

,

λ (s, v) =
1 + v√

2

((√
1− cosω

)
T +

(√
1 + cosω

)
B
)
.
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Next, the first and second partial differentials of λ (s, v) are

λs =
1 + v√

2
(ω′ cosωT − τN − ω′ sinωB) ,

λv =
1√
2
(sinωT + (1 + cosω)B) ,

λvv = 0,

λsv =
1√
2
(ω′ cosωT − τN − ω′ sinωB) ,

λss =
1 + v√

2

(
(κτ + ω′ cosω)T +

(
ω′
√
κ2 + τ2 − τ ′

)
N −

(
τ2 + ω′ sinω

)
B
)
,

And the vectorial product of the vectors λs , λv and its norm are

λs ∧ λv =
1 + v

2
(−τ (1 + cosω)T − ω′ (1 + cosω)N + τ sinωB)

∥λs ∧ λv∥ =
1 + v

2

√(
τ2 + ω′2

)
(1 + cosω)

2
+ τ2sin2ω.

From the expression (4), the normal of this surface shown by Nλ is given

Nλ =
−τ (1 + cosω)T − ω′ (1 + cosω)N + τ sinωB√(

τ2 + ω′2
)
(1 + cosω)

2
+ τ2sin2ω

.

Next, from the expressions (6) and (7), the coefficients of the first and the second
fundamental forms can be calculated as

Eλ =
1

2

(
(1 + v)

2
(
ω′2 + τ2

))
,

Fλ = − 1√
2
(ω′ (1 + v) sinω) ,

Gλ = (1 + cosω)

and

eλ = −
τ2

(
κ+

√
κ2 + τ2

)
+ (τω′ + ω′) (1 + cosω)

(
ω′√κ2 + τ2 − τ ′

)
(1 + v)

−1√
2
√(

τ2 + ω′2
)
(1 + cosω)

2
+ τ2sin2ω

,

fλ = 0,

gλ = 0,
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respectively. Finally, from the expression (5), we have the Gaussian and mean
curvatures as

Kλ = 0,

Hλ =

(
−κτ2 − τ2

√
κ2 + τ2

)
(1 + cosω)− (τω′ + ω′) (1 + cosω)

2 (
ω′√κ2 + τ2 − τ ′

)
√
2 (1 + v)

((
ω′2 + τ2

)
(1 + cosω)− ω′2sin2ω

)
.
√(

τ2 + ω′2
)
(1 + cosω.)

2
+ τ2sin2ω


.

Corollary 3. The ruled surface λ(s, v) is always developable.

Example 1. Let us consider the famous Viviani’s curve whose parametric form is
given by α(s) =

(
cos2 (s) , cos (s) sin (s) , sin (s)

)
. The Frenet vectors T (s), N(s), B(s)

and the unit Darboux vector C(s) are given in respective order as

T (s) =

−2 cos (s) sin (s)√
cos (s)

2
+ 1

,
2 cos (s)

2 − 1√
cos (s)

2
+ 1

,
cos (s)√

cos (s)
2
+ 1

 ,

N(s) =


−

2
(
cos (s)

4
+ 2 cos (s)

2 − 1
)

√
3 cos (s)

2
+ 5

√
cos (s)

2
+ 1

,−
cos (s) sin (s)

(
2 cos (s)

2
+ 5

)
√

cos (s)
2
+ 1

√
3 cos (s)

2
+ 5

,

− sin (s)√
cos (s)

2
+ 1

√
3 cos (s)

2
+ 5



B(s) =


(
2 cos (s)

2
+ 1

)
sin (s)√

3 cos (s)
2
+ 5

,− 2 cos (s)
3√

3 cos (s)
2
+ 5

,
2√

3 cos (s)
2
+ 5

 ,
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C(s) =



(
−6 cos (s)

4
+ cos (s)

2
+ 5

)
sin (s)

√
cos (s)

2
+ 1√√√√√√√

(
36 cos (s)

8
+ 135 cos (s)

6
+ 243 cos (s)

4
+ 261 cos (s)

2
+ 125

)
.
(
cos (s)

2
+ 1

)
,

2
(
3 cos (s)

4 − 2 cos (s)
2 − 3

)
cos (s)

√
cos (s)

2
+ 1√√√√√√√

(
36 cos (s)

8
+ 135 cos (s)

6
+ 243 cos (s)

4
+ 261 cos (s)

2
+ 125

)
.
(
cos (s)

2
+ 1

)
,

2
(
3 cos (s)

4
+ 6 cos (s)

2
+ 5

)√
cos (s)

2
+ 1√√√√√√√

(
36 cos (s)

8
+ 135 cos (s)

6
+ 243 cos (s)

4
+ 261 cos (s)

2
+ 125

)
.
(
cos (s)

2
+ 1

)
.


The graphs of ruled surfaces, obtained using these vectors and definitions and given
the parametric equations below, are presented in FIGURE 1, 2 and 3, respectively.

Σ (s, v) =
1√
2
(T + C) +

v√
2
(T + C) , ∆(s, v) =

1√
2
(T + C) +

v√
2
(N + C) ,

Υ(s, v) =
1√
2
(T + C) +

v√
2
(B + C) , χ (s, v) =

1√
2
(N + C) +

v√
2
(T + C) ,

P (s, v) =
1√
2
(N + C) +

v√
2
(N + C) , δ (s, v) =

1√
2
(N + C) +

v√
2
(B + C) ,

η (s, v) =
1√
2
(B + C) +

v√
2
(T + C) , φ (s, v) =

1√
2
(B + C) +

v√
2
(N + C) ,

λ (s, v) =
1√
2
(B + C) +

v√
2
(B + C) .
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Figure 1. The ruled surfaces whose the base curve TC – Smaran-
dache curve and the direction vector TC, NC, BC, respectively.

Figure 2. The ruled surfaces whose the base curve NC – Smaran-
dache curve and the direction vector TC, NC, BC, respectively.

Figure 3. The ruled surfaces whose the base curve BC – Smaran-
dache curve and the direction vector TC, NC, BC, respectively.
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4. Conclusion

In this paper, Smarandache curves derived from Frenet vectors and Darboux
vector of any curve are described. Then, by considering the direction vectors ob-
tained from Frenet vectors and Darboux vectors, new ruled surfaces are obtained
along these curves. Finally, the Gaussian and mean curvatures of these surfaces
are given. This paper can also be studied by considering other frames defined on
the curve, additionally it can be examined in the spaces other than Euclidean space.
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