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The process of transportation of any goods or ser-
vices from supply points to multiple demand lo-

cations is called logistics. A complete logistics system 
starts with the transfer of the raw material from the 
sellers or the suppliers to the factories for production. 
It goes on with the transfer of the goods produced 
in the factories to the depots or distribution centers. 
Distribution to the customers is the final step [1]. 
Both the distribution and the supply procedures need 
an effective transportation method, because about 
50% of the logistics cost for any business is due to 
distribution activities [2]. Therefore, effective and ef-
ficient utilization of distribution equipment and staff 
is of great importance for business managers.

The vehicle routing problem (VRP) was defined 
by Dantzig and Ramser [3]. In accordance with their 
definition, a fleet consisting of vehicles with identical 
or different capacities needs to serve a customer group 
located at different places with different demands from 
a central store. The objective is to select the most con-
venient route, time and cost. Since its initial definition, 
new constraints have been included to VRP, and various 
types have been proposed. For each type of problem, va-
rious models were developed and many algorithms have 
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been proposed [4,5]. Some of those algorithms use the 
exact solution methods, while others use heuristic met-
hods [6–10]. In the first of these studies, a heuristic met-
hod for the capacitated vehicle routing problem (CVRP) 
solution was suggested, which depends on the principle 
of “cluster first, route thereafter” [6]. In the clustering 
step, the fuzzy c-means (FCM) clustering algorithm was 
used and membership values between 0 and 1 were as-
signed to each demand point. In the routing step, the ro-
ute was enhanced using the tabu search algorithm. The 
suggested method was tested on benchmark datasets 
presented in the literature. In a later study, a web-based 
spatial decision support system (wSDSS) was proposed 
that depends on ant colony optimization (ACO) [7]. In 
this system only a web browser was needed; therefore, 
it had the flexibility to be used in various real-world 
conditions. The proposed method was tested on the 
city garbage collection network in Coimbra, Portugal. 
In another study, an advanced ACO method was pro-
posed that had a novel strategy and a mutation process 
to update increasing pheromone levels [8]. This method, 
which used an ant-weight strategy, was tested on 14 dif-
ferent benchmark problems. The results obtained were 
compared with other methods proposed for CVRPs. In 
contrast, Harmanani et al. [9] developed a new method 

A B S T R A C T

This work focuses on the capacitated vehicle routing problem. In this work, a real-time 
application is developed using online real-world data for mobile devices have IOS and 

Android operating systems. The fuzzy c-means clustering algorithm is used to group the 
demand points and the ant colony optimization algorithm is employed to determine the 
best route within each group. The customer demand points and distances between these 
points are obtained via Google Places and Google Directions APIs. The deviations in the 
route that result from the environmental and road conditions are identified immediately 
with the help of global positioning system technology allowing the route suggestions to 
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As seen in the literature review, throughout the studies 
of the solution to CVRP, there is no cross-platform support 
except for the web based ones [6,8–16]. None of these has 
a special interface designed for mobile devices. Only one 
of them was tested on real-world data [7], while the others 
were tested on widespread benchmark datasets [6,8–16]. 
Again, none of them utilized global positioning system 
(GPS) [6-16]. In this work however, a real-time application 
for CVRP was developed that does use real-world online 
data and that can run on Android and IOS devices. In this 
application, the FCM clustering method was used to group 
the demand points and the ACO algorithm was preferred to 
determine the best route within a group. Customer demand 
points and distances between these points were obtained 
instantaneously via Google Places and Google Directions 
APIs. The deviations in the routes, due to environmental 
and road conditions, were identified immediately with the 
help of GPS technology, and new route suggestions could 
be made. The developed applications were experimented on 
two different datasets; 1) against a benchmark and 2) against 
real-world data.

MATERIAL AND METHODS

Vehicle Routing Problem

In the Travelling Salesman Problem (TSP), a vehicle or a 
salesman begins from a specific location, stops at every 
other location in the system once and comes back to the 
beginning [17,18]. The aim is to minimize the total tour 
distance. VRP, however, is a more complicated deriva-
tive of m-TSP, which includes more than one salesman. 
In addition to the necessity for every salesman to have a 
different route, which is present in m-TSP, VRP was ob-
tained by introducing the constraint that salesman can 
carry a certain amounts of load and every point can have 
different demands [1]. VRP can be static or dynamic de-
pending on the environment and open- or closed-ended, 
depending on the route. More subcategories are defined 
depending on the number of constraints that are present 
in the problem, such as time, cost, the distances between 
the demand points, or the capacity of the vehicles [19,20]. 
The mathematical model for CVRP, which is commonly 
studied in literature and is considered in this study, is gi-
ven below [21]:

ij ijk
k V i N j N

min d x
∈ ∈ ∈
∑∑∑ (1)

1,ijk
k V j N

x i N
∈ ∈

= ∀ ∈∑∑ (2)

,i ijk k
i N j N

m x q k V
∈ ∈

≤ ∀ ∈∑ ∑ (3)

for the solution of the same problem based on the simu-
lated annealing algorithm. This method included a com-
bination of random and deterministic operators based on 
the problem information. To test the suggested method, 24 
benchmark datasets were used and comparisons with other 
methods were made. Additionally, a new method, based on 
a genetic algorithm that used an optimized crossover ope-
rator, was suggested by Nazif and Lee [10]. For the crossover 
process in this method, two parents were chosen first and 
then two offspring were produced with the help of a mecha-
nism constructed by a complete, undirected, bipartite graph. 
This method, called optimized crossover genetic algorithm 
(OCGA) was tested on existing benchmark datasets.

In addition to the above studies, new studies have also 
been carried out, especially using heuristic methods [11–16]. 
For instance, Zhang and Lee [11] proposed an algorithm 
that includes numerous improvements to enhance the ca-
pabilities of the diversified and intensified search of the con-
ventional artificial bee colony (ABC) algorithm. They called 
it RABC. The RABC algorithm was examined with diffe-
rent benchmark instances. Teoh et al. [12] suggested an imp-
roved differential evolution algorithm with the local search 
(DELS). They used three standard local search operators, 
which are drop one point, swap two points and flip method. 
The DELS algorithm was tested on benchmark instances. 
Mohammed et al. [13] proposed a new method using the 
k-nearest neighbor algorithm called KNNA. The KNNA al-
gorithm was designed not to require a large database to re-
cord the population and it was examined with well-known 
instances. Rabbouch et al. [14] suggested a new dynamic 
version of the simulated annealing algorithm, which was 
called the empirical-type simulated annealing (ETSA). 
The ETSA method incrementally exploits the last portion 
of worse feasible solutions and updates the Boltzmann ac-
ceptance criterion of the simulated annealing. The method 
was tested on benchmark instances. Altabeeb et al. [15] 
proposed a new hybrid firefly algorithm (CVRP-FA). They 
combined improved 2-opt and 2h-opt algorithms. Besides, 
they used two mutation operators and a partially mapped 
crossover. Thus, they improved the solutions and obtained 
a higher convergence rate. The CVRP-FA method was exa-
mined with different scale instances. İlhan [16] suggested 
an improved simulated annealing algorithm with crossover 
operator (ISA-CO). In the ISA-CO method, a population 
based simulated annealing algorithm was used. The soluti-
ons in the population were improved through the reversion, 
insertion, scramble and swap operators. The routes of the 
solution were developed the improved 2-opt algorithm. The 
order crossover and partially mapped crossover operators 
were applied to the solutions to obtain a higher convergence 
rate. The ISA-CO algorithm was tested on 91 well-known 
instances.
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The equalities above were obtained for a system with a 
number of vehicles, V, and a number of demand points, N. 
Here, xijk is a binary variable stating that the connection (i, j) 
was established with the vehicle k, and mi is the demand of 
point i. The aim function of the model is given by (1). The 
costs for the connections (i, j) with dij (distance from point i 
to point j) are to be minimized with a number of vehicles, k. 
It is expected that every point is served by one vehicle only 
(2). The necessity for the routes created not to exceed the 
vehicle capacity qk, is included in the model by (3). Connec-
tions for every vehicle k to come in and go out of the depot 
is provided by (4) and (5). The constraint that regulates the 
flux is given by (6). A vehicle that arrives at any demand po-
int has to leave for another demand point.

In this work, demand points and the distances betwe-
en them are took place using real-world online data. Google 
Directions and Google Places APIs are used for this task. In 
Asymmetric CVRP (because the journeys are made by ve-
hicles) dij ≠ dji, therefore, the distances from point i to point j 
and from point j to point i are determined [22]. Additionally, 
if there are two or more alternative routes from point i to 
point j, the shortest one is chosen while calculating the dij 
cost value.

Methods

The proposed algorithm in this work consists of three 
steps; the grouping of demand points, the determination 
of the best route within each group and the implemen-
tation of route enhancing operators. The first step is ac-
hieved by using the FCM clustering method, as sugges-
ted in [6]. The second step is achieved by using the ACO 
algorithm. The third step is performed using the Swap 
and Insertion operators. The flowchart for the proposed 
algorithm, and the related steps are given in Fig. 1. As 
seen in this figure, algorithm is supplied with the neces-
sary initial parameters for the FCM and ACO.  Geograp-
hical locations of the customers and the depot (latitude 
and longitude), and the demands of the customers, are 
retrieved from a prerecorded database.  Using these data, 
the distances between the customers themselves and the 
distances to the depot are calculated with the help of the 

Google Directions APIs, online. Then, the FCM cluste-
ring, ACO algorithms and route enhancing operators are 
operated respectively.

Fuzzy C-Means Clustering

The FCM was first proposed by Bezdek in 1981 [23]. 
When grouping the customers, membership values are 
calculated for every customer in every cluster, but rela-
ted customers are included in the cluster with the highest 
membership values. The number of clusters is calculated 
at the beginning of the FCM clustering algorithm with 
regard to the sum of the customer demands and the ve-
hicle capacities. Then the initial membership matrix is 
created randomly. Calculations of cluster centers and 
the updates to the membership matrix are repeated until 
the termination criterion is reached. These processes are 
performed by (8) and (9), in order, respectively. For the 
termination criterion, the inequality (10) is used.

1
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Figure 1. The proposed algorithm flowchart.
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Here, X = {x1, x2, … xN} are the demand points, C = {c1, 
c2, … cc} are the cluster centers and U = uij ϵ [0, 1] (i = 1, 2, …, 
N; j = 1, 2, …, c) is the membership matrix. Element uij gives 
the membership degree of customer xi to the cluster cj. The 
parameter m is the weighted exponent that is bigger than 
1, and ϵ is the termination criterion between 0 and 1. The r
parameter shows the number of iterations.

The expression i jx c−  in (9) shows the distance 
between demand point xi and the cluster center cj. In this 
work, xi and cj are two geographical points on Earth and 
they symbolize the latitude and the longitude, respectively. 
The distance between these two points is not calculated as 
distance travelled by land but distance travelled by air. This 
is due to Google Directions APIs that could not always de-
termine a route between a cluster center (cj) and a demand 
point (xi) for vehicle travel. For the calculations of the air 
distances, the Haversine formula given by (11) is used [24].

2 2
1 2sin ( ) cos( ).cos( ).sin ( )

2 2
c 2arctan( , 1 )
d .

longlata lat lat

a a
R c

∆∆
= +

= −
=

           (11)

In (11), the first point is (lat1, long1) and the second point 
is (lat2, long2); the distances, Δlat = lat2 – lat1 and Δlong = long2 

– long1, are then calculated. The parameter R represents the
Earth radius and is assumed 6371 km in this work. After
calculating the membership values of the demand points for 
every cluster between 0 and 1, the groups are determined
by considering the vehicle capacities. For this, the demand
points with the highest degree of membership are first as-
signed to the related group. Groups created are then chec-
ked against the vehicle capacities. If the sum of demands in
any group exceeds the vehicle capacity, then the customer
with the lowest degree of membership is excluded from that 
group. After that, the customer is assigned to the second
group in terms of the degree of membership, again checking 
against the vehicle capacities.

Ant Colony Optimization Algorithm

The ACO algorithm was first proposed by Dorigo [25] 
for solutions to combinational optimization problems. In 
this work however, it is employed to determine the best 
routes after the group updates. Therefore, the operatio-
nal steps explained above are repeated for every group 
separately, and the best fitness values and corresponding 
routes are determined. The ACO algorithm starts with 
the formation of an initial pheromone matrix. In this 
work, the constant value of 10−4 is assigned to every 
element of the initial pheromone matrix. After that, ant 
tours are created according to the initial population size 
given to the algorithm. For this process, every ant is initi-

ally placed in the depot. Then, the destination of the ant 
k at the depot (location i) is calculated with (12) from a 
number of alternative locations, u.

(i) 0max [ (i,u)] *[ ( , )]
(8) Otherwise

a
u Jk i u if q q

j
use Equation

βτ η∈ ≤ =  
  

          (12)

The τ(i, u) is the pheromone path on the (i, u) line. The 
expression η(i, u) = 1/δ(i, u) is the inverse of the distance bet-
ween the points i and u. The Jk(i) symbolizes the points that 
have not yet been visited by the ant k at the point i. α is the 
importance of the pheromone amount to the related route 
and β is the effect of the route lengths on the choice of the 
next point. These parameters are greater than 0 and given 
to the algorithm initially by the user. q0 (0≤q0≤1) gives the 
relative importance of studying the solution space. If q>q0, 
then the second rule for the transition is applied and the 
possibilities of choice between the available routes are cal-
culated with (13).
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β
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∈ 

=  
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After all the ants’ tours are completed, fitness values are 
calculated. The fitness value is calculated on the assumpti-
on that the ant leaving the depot would return after stop-
ping at the demand points. The minimum values obtained 
and the routes providing these values are recorded as the 
best values for the related iteration. The local pheromone 
value is updated using (14) and (15).

1
( 1) (1 ) ( ) ( 1)

m
k

ij ij ij
k

t t tτ ρ τ τ
=

+ = − + ∆ +∑ (14)

1 / ( 1)
( 1)

0

k
k
ij

L t If ant k used the pathij
t

Otherwise
τ

 +∆ + = 


 (15)

The τij (t) is the initial pheromone level and ρ (0≤ρ≤1) 
is the pheromone evaporation parameter, whose value is 
assigned by the user. The term Lk(t+1) represents the total 
tour length of the ant k, within the associated group. After 
all the ants complete their tours, a global pheromone update 
is carried out. The pheromone levels on the shortest routes 
preferred by the ants are increased according to (16) and (17).

( 1) (1 ) ( ) ( 1)k
ij ij ijt t tτ ρ τ τ+ = − + ∆ + (16)

1 / ( 1)
( 1)

0

best
k
ij

L t If ij belongs to
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Otherwise
τ

+
∆ + = 



(17)
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The term Lbest(t+1) is the best tour length took place in 
the related group. These operations are rerun for the iterati-
on count determined by the user.

Route Enhancing Operators

After the work of the ACO algorithm ends, the route en-
hancing operator is applied the corresponding solution. 
Two different route enhancing operators, the Swap and 
the Insertion, were used in this work. Which operator to 
use was decided according to the random number gene-
rated between 0 and 1. If the generated number was equal 
to or bigger than 0.5, the Swap operator was used, ot-
herwise the Insertion operator was used. Both the Swap 
operator and the Insertion operator only operate for cus-
tomers in the route enhancing pool. The customers to 
be added to the route enhancing pool for each cluster is 
determined by the threshold value. The threshold value is 
compared with the membership values calculated by the 
FCM clustering algorithm for each customer. Customers 
whose membership value is equal to or smaller than the 
threshold value are added to the route enhancing pool 
of the relevant cluster. All customers are naturally added 
to the route enhancing pool if 1.0 value is entered in the 
algorithm as the threshold value.

Fig. 2 and Fig. 3 show the implementation of the Swap 
and the Insertion operators on a current solution, respecti-
vely. First, two different clusters are determined at random. 

It is assumed that clusters 2 and 5 in Fig. 2b and clusters 3 
and 5 in Fig. 3b are randomly determined. Then, swap and 
insertion points are determined randomly for these deter-
mined clusters. These points are 2 and 3 for clusters 2 and 5 
in Fig. 2b, respectively. These points are 4 and 2 for clusters 
3 and 5 in Fig. 3b, respectively. For the swap operator, the 
customers at the swap points are swapped between the two 
clusters (Fig. 2c). For the Insertion operator, the customer at 
the insertion point of the first determined cluster is moved 
to the insertion point of the second determined cluster (Fig. 
3c). The Swap and the Insertion operators can work for one 
or two customers and this number is randomly determined. 
For the implementation of these operators, the determined 
customers must be in the route enhancing pool.

Interface Development

Google Android and Apple IOS dominate the mobile de-
vices market. Therefore, the developed application was 
aimed at those two platforms.  The programming inter-
face was created in Embarcadero Delphi 10 Seattle which 
provides cross-platform support. The information from 
Google Directions and Google Places APIs was integra-
ted through the TMS WebGMaps for FireMonkey com-
ponent. Additionally, SQLite was preferred to keep the 
data that got into the application and the results.

The developed interface consists of three basic win-
dows: Data Input, Run the Algorithm and Follow the Route. 

Figure 2. (a) Current Solution (b) Customer choice for Swap operator 
(c) New Solution.

Figure 3. (a) Current Solution (b) Customer choice for Insertion opera-
tor (c) New Solution.

(a)

(b)

(c)

(a)

(b)

(c)
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For CVRP, the Data Input window was used for the input 
of customer locations and demand data, showing their lo-
cations on the map and calculating the distances between 
them. As seen in Fig. 4a, the information input for any cus-
tomer consists of the name of the customer, the amount of 
demand, and the latitude and longitude of the location. The 
first entry in the customer table is the location and the name 
of the depot. The data recorded in this table can be exported 
as a .csv extension, a common file format for text. Additio-
nally, customer data saved with a .csv extension can be im-
ported to this table via an associated button. Those data in 
the customer table can be monitored on the map. Changes 
can be made on the map using the marker for the related 
customer via the Google Places API. The distance between 
the locations is calculated using the Google Directions API. 
There might be more than one route between two locations. 
In that case, the shortest route is assigned as the distance 
between those two locations. The distances are determined 
both ways, because the distance from point i to point j may 
be different from the distance from point j to point i, for land 
travel using a vehicle (Fig. 4b).

The Run the Algorithm window is illustrated in Fig. 
5a. parameter adjustments for FCM clustering and ACO 
algorithms are made in this window. After the parameter 
values are entered, the algorithm is run with the associated 
button (Run). The algorithm uses the location, the distance 
and the demand amount data from the Data Input window. 
The results are kept along with all the parameter values. The 

shortest distances and the routes associated with them are 
listed when the Best Results button is operated (Fig. 5b). Hit-
ting the Show on Map button gives those routes as polylines 
of different colors on the map. Here, a desired route and its 
associated distance can be monitored, as well as the routes 
and the distances for every vehicle altogether (Fig. 5c).

The Follow the Route window can be seen in Fig. 6. 
With this window, it is possible to monitor a desired route or 
routes starting from the current location in real time. The 
current location is retrieved with the help of GPS techno-
logy. Thus, the deviations from the routes can be identified 
immediately and new route suggestions can be made. The 
planned routes are commonly changed due to environmen-
tal and road conditions. Therefore, real-time applications 
are needed at the present time to avoid these conditions yet 
suffer minimal loss (time, distance). In this work, the asso-
ciated window was developed to take consideration of this 
requirement. The new route suggestions, with regard to the 
deviations, are identified using the ACO algorithm. The 
minimum distance from the present location to the depot 
is determined. Of course, it is assumed that the unvisited 
demand points would be visited (in the order determined 
by the first route).

RESULTS AND DISCUSSION

The proposed algorithm was initially tested on benc-
hmark datasets. For this task, 10 datasets were used, 5 

(a) (b)

Figure 4. (a) Depot and customer data (b) The distances between locations window.
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from the suggestions of Augerat et al. [26] and 5 from the 
suggestions of Christofides and Eilon [27]. Those data-
sets include 1 depot, between 31 and 50 demand points 

and between 3 and 6 vehicles. The proposed algorithm 
was run 10 times for each dataset and the obtained best 
results were determined. These results are in Table 1. As 
seen in that chart, the algorithm performance was not 
greatly affected by the demand points or vehicles num-
bers. The actual impact is observed in terms of the dis-
tances to the cluster centers of the demand points, in ot-
her words membership values. In the proposed algorithm, 
a membership value is calculated for each demand point, 
these membership values are compared with a threshold 
value, and the customers to be added to the route en-
hancing pool are determined. The higher the threshold 
value, the higher the customer number to be added to 
the route enhancing pool. The threshold value also varies 
depending on the dataset used. For example, the datasets 
A-n32-k5 and E-n33-k4 have almost the same number of 
demand points. On the other hand, with the threshold 
value of 0.7, 22 customers for the A-n32-k5 dataset and 

(a) (b)

         (c)

Figure 5. (a) Parameter Settings window (b) List of best routes obtained (c) Routes as polylines on the map.

Figure 6. Follow The Route window.
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26 customers for the E-n33-k4 dataset are assigned to the 
route enhancing pool. In this work, automatic detection 
method was used to remove this variability depending on 
the dataset property, to prevent threshold value entry to 
the algorithm at each run. In this method, the threshold 
value is automatically set so that half of the customers 
will be assigned in the route enhancing pool. The thres-
hold values determined for each dataset is given in Table 
1.

The mobile application based on the proposed al-
gorithm was also tested on two different datasets formed 
using real-world data. The first set was formed by choosing 
20 provinces, covering all the seven geographical regions of 

Table 1. The obtained results for the benchmark datasets.

Dataset Name Vehicle Number Demand Point 
Number Threshold Value Result Best Known 

Optimal
Difference From 

Optimal (%)

A-n32-k5 5 31 0.861 810 784 3.32

A-n36-k5 5 35 0.843 825 799 3.25

A-n38-k5 5 37 0.824 746 730 2.19

A-n39-k6 6 38 0.786 849 831 2.16

A-n45-k6 6 44 0.747 980 944 3.81

E-n22-k4 4 21 0.407 385 375 2.66

E-n23-k3 3 22 0.860 576 569 1.23

E-n30-k3 3 29 0.961 549 534 2.81

E-n33-k4 4 32 0.816 851 835 1.91

E-n51-k5 5 50 0.706 539 521 3.45

Turkey. For the second set, counties of the Konya province 
were considered. Twenty counties were chosen, covering 
the entire province. Konya province was chosen as the lo-
cation of the depot in both the provinces and the counties. 
The amount of demand was determined as 10 for every cus-
tomer. Fig. 7 illustrates the provinces and the counties in the 
datasets along with their locations.

Testing of the developed application was performed 
for a varying number of iterations, different population si-
zes and vehicle capacities. The number of clusters for the 
FCM clustering algorithm is calculated by considering the 
sum of the customer demands and vehicle capacities. We-
ight m was assumed as 2 and the terminating criterion ϵ as

Figure 7. The locations for the provinces and the counties in two datasets. The customer names state the names of the provinces and the counties..
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10−12. While the factor α and the factor β were considered 
of 2, the pheromone evaporation value ρ as 0.5 for the ACO 
algorithm. Experiments were performed both on Android 
smartphone and IOS tablet devices separately. The results 
obtained by both devices are given in Table 2 and Table 3 in 
detail. For example, for the dataset of provinces (Table 2), if 
the iteration count was 100, the population size 20 and the 
vehicle capacity 40, a result of 10764 km is obtained with 
the IOS device. If the vehicle capacity was 50, the minimum 
distance to be travelled was found to be 8446 km. When the 
runtime for the algorithm is examined for the same values, 
it was 463.54 ms for a vehicle capacity of 40 and 541.78 ms 
for a vehicle capacity of 50. For the dataset of counties, if 
the number of iterations was 100, population size 20 and ve-
hicle capacity 40, a result of 2021 km was obtained with the 
Android device. If the vehicle capacity was 50, the minimum 
distance to be travelled was found to be 1904 km.  Runtimes 
for the algorithm using the same values was 950.04 ms for a 
vehicle capacity of 40 and 1143.61 ms for a vehicle capacity 
of 50.

As seen in the results for both the datasets for constant 
vehicle capacity, the iteration number and the population 
size does not greatly affect the results in terms of distance. 
But for a constant iteration count and population size, an 
increase in the vehicle capacity results in a partial decrease 
of the travel distance. In Fig. 8 (for the dataset of provinces), 
the best routes for every single vehicle created by the propo-
sed algorithm is given by polylines of different colors - as an 
example, with a number of iteration of 100, a population size 
of 20 and a vehicle capacity of 50.

CONCLUSION

In this work, a real-time application was developed for 
CVRP, which can run on the mobile devices as IOS and 
Android. The real-world online data was operated in this 
application. The FCM clustering algorithm was used to 
group the demand points and the ACO algorithm was 
utilized for the best route selection in each group. Custo-
mer demand points and distances between these points 

Table 2. The provinces dataset results.

Mobile Device → The Android Device The IOS Device

Iteration Population Capacity Distance Time Distance Time

100

20

40 10855 972.30 10764 463.54

50 8446 1098.08 8446 541.78

60 8065 1542.60 7987 731.86

70 7512 1591.11 7389 747.23

50

40 10554 2453.18 10554 1162.15

50 8416 2705.32 8416 1352.60

60 7945 2911.31 7902 1467.25

70 7423 3012.13 7336 1519.61

Table 3. The counties dataset results.

Mobile Device → The Android Device The IOS Device

Iteration Population Capacity Distance (km) Time (ms) Distance (km) Time (ms)

100

20

40 2021 950.04 1919 468.11

50 1904 1143.61 1724 539.57

60 1713 1481.02 1609 728.52

70 1572 1465.65 1543 751.48

50

40 1856 2397.12 1856 1137.43

50 1734 2705.30 1711 1353.19

60 1592 2764.32 1592 1408.34

70 1557 2908.63 1527 1503.17
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Figure 8. The best routes.

were obtained instantaneously via Google Places and Go-
ogle Directions APIs. The deviations in the routes due to 
environmental and road conditions were identified im-
mediately with the help of GPS technology and new route 
suggestions were made instantaneously.

The proposed algorithm was tested on 10 different 
benchmark datasets. Additionally, two different datasets 
were forearmed from real-world data, and tests were perfor-
med with Android and IOS devices separately. Test results 
showed that this application could be used in real time to 
identify and follow the optimum route.
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