
Journal of Mathematical Sciences and Modelling, 5 (1) (2022) 8-15
Research Article

Journal of Mathematical Sciences and Modelling
Journal Homepage: www.dergipark.gov.tr/jmsm

ISSN 2636-8692
DOI: http://dx.doi.org/10.33187/jmsm.1007857

Differential Equations of Rectifying Curves and Focal Curves in
En
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Abstract

In this present paper, rectifying curves are re-characterized in a shorter and simpler way
using harmonic curvatures and some relations between rectifying curves and focal curves
are found in terms of their harmonic curvature functions in n−dimensional Euclidean space.
Then, a rectifying Salkowski curve, which is the focal curve of a given space curve is
investigated. Finally, some figures related to the theory are given in the case n = 3.

1. Introduction

Kim and et al. consider a space curve in which the relationship between torsion and curvature is a non-constant linear function, [1]. Then,
Chen characterize a special curve whose position vector always lies in its rectifying plane, [2, 3]. In other words, the position vector of a
rectifying curve α with Frenet vector {T,N,B} can be stated by

α (s) = λ (s)T (s)+µ (s)B(s) (1.1)

for λ (s) and µ (s) differentiable functions. The most known characterization of the rectifying curve is that the ratio of torsion to curvature is
a non-constant linear function in terms of its arc-length parameter s. The authors prove that the centrode of a unit speed curve with non-zero
constant curvature (or non-constant curvature) and non-constant torsion (or non-zero constant torsion) is a rectifying curve . Then, Chen
obtain that a curve on a cone in E3 is a geodesic if and only if it is either a rectifying curve or an open portion of a ruling, [4]. Furthermore,
Cambie et al. generalize rectifying curves in an arbitrary dimensional Euclidean space, [5]. In addition to these, in Minkowski space,
rectifying curve is similar to in Euclidean space, [6, 7].

In 1975, authors introduced the functions of harmonic curvature, [8]. The authors generalize inclined curves thanks to the harmonic curvature
in E3 to En and then give a characterization for the inclined curves in En. This subject has been studied by many authors since then and it also
has many geometric interpretations. For example, Camci et al. investigate the relations between the harmonic curvatures of a non-degenerate
curve and the focal curvatures of tangent indicatrix of the curve and they give that harmonic curvature of the curve is focal curvature of the
tangent indicatrix [9]. Kaya et al. give a new definition of helix strip. They study the harmonic curvatures functions of a strip by using
harmonic curvature functions and give some characterizations of the strips’s harmonic curvature functions and total curvature functions
of a strip [10]. The authors look in a non-generated curve for a generalized helix using these curvatures in [11]. Then, Gök et al. define a
new kind of helix called Vn−slant helix by using a similar approach of harmonic curvature functions in n-dimensional Euclidean space and
Minkowski space, [12, 13]. Harmonic curvatures are also studied in the Lorentz-Minkowski space [14, 15, 16]. As it can be easily seen
when these studies are examined, it has been very useful to use harmonic curvature functions when characterizing curves. The existing
characterizations have been made very short and simple through the harmonic curvature, especially when working in high-dimensional
spaces. Many geometric concepts such as helices, slant helices, strips and some other special curves have been defined by using their
harmonic curvature functions.
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On the other hand, Vargas defined focal curve of α which is the centers of its osculating hyperspheres of the curve, [17]. The centers of the
osculating hyperspheres of the curve are well defined only for the points of the curve where all curvatures are non-zero. Öztürk and Arslan
characterized focal curves and their Darboux vectors. They have shown that if the ratios of the curvatures of a curve γ are constant, then the
ratios of the curvatures of the focal curve Cγ are constant, [18]. Furthermore, Öztürk et al. studied the focal representation of k−slant helices
in Em+1, [19].

In this study, rectifying curves with their harmonic curvature functions are re-characterized in n−dimensional Euclidean space. Then, some
relations between rectifying curves and focal curves are investigated. Also, a necessary condition for the focal curve of any space curve to be
a rectifying curve is given. Finally, the rectifying Salkowski curve whose focal curve is a rectifying curve is investigated.

2. Basic Concepts and Notations

Let α : I ⊂R→ En be an arbitrary curve in En. Let {T,N,B1,B2, ...,Bn−2} be the moving Serret-Frenet frame along the unit speed curve α.
Then the Frenet formulas are given as follows

T
′

N′

B′1
...

B′n−4
B′n−3
B′n−2


=



0 k1 0 · · · 0 0 0
−k1 0 k2 · · · 0 0 0

0 −k2 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 kn−2 0
0 0 0 · · · −kn−2 0 kn−1
0 0 0 · · · 0 −kn−1 0





T
N
B1
...

Bn−4
Bn−3
Bn−2


where all ki curvatures denotes the ith curvature function of the curve and positive, [20, 21].

Definition 2.1. Let α : I ⊂ R→ En be a unit speed curve. Harmonic curvatures of α is defined by

Hi : I ⊂ R→ R, i = 0,1,2, ...,n−2, (2.1)

Hi(s) =


0 , i = 0

k1(s)
k2(s)

, i = 1

1
ki+1(s)

{V1[Hi−1]+Hi−2ki} , i = 2,3, ...,n−1

(2.2)

in the paper, [8].

Definition 2.2. A curve α : I ⊂ R→ En is a rectifying curve if the orthogonal complement of N(s) contains a fixed point for all s ∈ I, [5].

Definition 2.3. The center of the osculating hypersphere of the curve α at a point lies in the hyperplane normal to the curve α at that point.
Let α : I ⊂ R→ En be a curve with Frenet vectors {T,N,B1,B2, ...,Bn−2} and ki curvature functions. Then the focal curve of the curve α is
written as follows:

Cα = α(s)+ c1(s)N(s)+ c2(s)B1(s)+ c3(s)B2(s)+ ...+ cn−1(s)Bn−2(s) (2.3)

where c1,c2, ...,cn−1 smooth functions called focal curvatures of the curve α . Moreover, the function c1 never vanishes and c1(s) =
1

k1(s)
.

Then, the focal curvature functions of the curve α have defined as

ci(s) =


0 , i = 0
1

k1(s)
, i = 1

1
ki(s)

{
c′i−1(s)+ ci−2(s)ki−1(s)

}
, i = 2,3, ...,n−1

(2.4)

in the paper, [17].

Theorem 2.4. Let α : I ⊂ R→ En be an arbitrary curve with Frenet vectors {T,N,B1, ...,Bn−2} and Cα be its focal curve with the Frenet
vectors

{
T ,N,B1, ...,Bn−2

}
in En. Then, ki and Ki, denotes the ith curvature functions of the curve α and the curve Cα , respectively. There

are following relationship between the Frenet frames and curvatures of the curves.

T = Bn−2, N = Bn−3, B1 = Bn−4 , . . . , Bn−3 = N, Bn−2 = T, (2.5)

Ki =
kn−i+1

c′n−1 + kn−1cn−2
, i ∈ {1,2, ...,n−1}

where ci, i ∈ {1,2, ...,n−1} are the focal curvatures of the curve, [17].

Definition 2.5. A curve α : I ⊂ R→ En is the Salkowski curve if and only if it has the constant curvature but non-constant torsion with an
explicit parametrization, [22, 23].
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3. Rectifying Curves in n−Dimensional Euclidean Space

In this first subsection, re-characterization of rectifying curve according to harmonic curvature functions is given with similar idea defined by
Özdamar and Hacısalihoğlu in [8]. In the next subsection, we will look for the answer to the following question

“When does the focal curve of a given curve become rectifying curve?”.

3.1. Rectifying Curves with Harmonic Curvature Functions

Let α be an arc-length parametrized rectifying curve in En as

α (s) = λ (s)T (s)+µ1(s)B1(s)+ ...+µn−2(s)Bn−2(s) (3.1)

with λ ,µ1, ...,µn−2 real valued functions. If we take the derivative of α , get following equation

α
′ (s) = λ

′
(s)T (s)+λ (s)k1(s)N(s)+µ

′

1(s)B1(s)+µ1(s)(−k2(s)N(s)+ k3(s)B2(s))+ ...

+µ
′
n−2(s)Bn−2(s)+µn−2(s)(−kn−1(s)Bn−3(s)).

Also, if we make the necessary arrangements, we have

T (s) = λ
′
(s)T (s)+(λ (s)k1(s)−µ1(s)k2(s))N(s)+(µ ′1(s)−µ2(s)k3(s))B1(s)+(µ1(s)k3(s)+µ

′

2(s)−µ3(s)k4(s))B2(s)

+(µ2(s)k4(s)+µ
′

3(s)−µ4(s)k5(s))B3(s)+ ...+(µ ′n−2(s)+µn−3(s)kn−1(s))Bn−2(s).

So, we can write following equations as


i. λ

′
(s) = 1

ii. λ (s)k1(s)−µ1(s)k2(s) = 0
iii. λ (s)k1(s)−µ1(s)k2(s) = 0
iv. µi−1(s)ki+1(s)+µ

′
i (s)−µi+1(s)ki+2(s) = 0, i ∈ {2,3, ...,n−3}

v. µ ′n−2(s)+µn−3(s)kn−1(s) = 0.

(3.2)

We will try to determine λ and µi functions with the help of the harmonic curvature functions defined by the following definitions. In fact,
we want to emphasize the similarity of the previously described µi,k functions in [5] and harmonic curvature functions.

Definition 3.1. Let α be parameterized by an arc-length parameter curve in En with non-zero curvatures {k1,k2, ...,kn−1}. Then, we define
the harmonic curvature of rectifying curve α in terms of the curvatures using the similar idea given in the paper [8].

Hi(s) =


0 , i = 0

(s+ c)
k1(s)
k2(s)

, i = 1

1
ki+1(s)

{
H ′i−1(s)+Hi−2(s)ki(s)

}
, i = 2,3, ...,n−2

(3.3)

where c is a real constant.

Definition 3.2. Let α be an arc-lengthed regular curve in En with focal curvatures {c1,c2, ...,cn−1}. Then the harmonic curvature functions
of α in terms of the focal curvatures as follows:

Hi(s) =


0 , i = 0

c′1(s)
c1(s)c2(s)

, i = 1

2ci(s)ci+1(s)
δi(s)

{
2ci−1(s)ci(s)

δi−1(s)
Hi−2(s)+H ′i−1(s)

}
, i = 2,3, ...,n−2

where δi(s) =

(
i
∑

j=1
c2

j(s)

)′
, [18].

Corollary 3.3. Let α be an arc-lengthed rectifying curve in En with non-zero curvatures {k1,k2, ...,kn−1}. Then, following equalities are
obtained from equation (3.2) according to harmonic curvatures in equation (3.3).

i. λ (s) = s+ c

ii. µ1(s) = λ (s)
k1(s)
k2(s)

= H1(s)

iii. µ2(s) =
µ ′1(s)
k3(s)

=
1

k3(s)
H ′1(s) = H2(s)

iv. µi(s) =
1

ki+1(s)

{
µ ′i−1(s)+µi−2(s)ki(s)

}
µi(s) =

1
ki+1(s)

{
H ′i−1(s)+Hi−2(s)ki(s)

}
= Hi(s)
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In the following Corollary, we will reconstract the Theorem 4.1 given in [5] in terms of the harmonic curvature functions.

Corollary 3.4. Let α be an arc-length parameterized curve in En with non-zero curvatures {k1,k2, ...,kn−1}. Then α is congruent to a
rectifying curve if and only if

H ′n−2(s)+Hn−3(s)kn−1(s) = 0 (3.4)

where Hi are harmonic curvature functions.

Proof. Assume that α be an arc-length parameterized curve in En with non-zero curvatures {k1,k2, ...,kn−1}. If α is a rectifying curve, we
have the following equation according to item (v) in equation (3.2)

µ
′
n−2(s)+µn−3(s)kn−1(s) = 0. (3.5)

Also, from the above Corollary, we have µi(s) = Hi(s). If this equation is substituted in the above equation, we can easily write that

H ′n−2(s)+Hn−3(s)kn−1(s) = 0. (3.6)

Conversely, assume that equation (3.4) is provided. Then, we can see that α is congruent to a rectifying curve.

Corollary 3.5. Let α be an arc-length parameterized curve in En with non-zero curvatures {k1,k2, ...,kn−1}. The position vector of the
rectifying curve α satisfies

α (s) = (s+ c)T (s)+H1(s)B1(s)+ ...+Hn−2(s)Bn−2(s) (3.7)

for Hi differentiable harmonic curvature functions.

Now we give a relationship between Corollary 3.4 and Theorem 4.1 in [5] with the following Corollary. The first two items are our results
and the third item is the characterization of being a rectifying curve in study [5]. In other words, these theories are compatible.

Corollary 3.6. Let α be an arc-length parameterized curve in En with non-zero curvatures. Then the following equations are equivalent
i) α is a rectifying curve.
ii) H ′n−2(s)+Hn−3(s)kn−1(s) = 0.

iii) kn−1(s)
n−4

∑
m=0

µn−3,m(s) ∂ m

∂ sm

(
k1(s)
k2(s)

)
+

n−3

∑
m=0

(
µn−2,m(s) ∂ m

∂ sm

(
k1(s)
k2(s)

))′
= 0

The authors gave a new approach on helices in En with harmonic curvature functions in [24]. With the help of this idea we give a relation
between rectifying curve and harmonic curvature functions in the following theorem.

Theorem 3.7. Let α be an arc-length parameterized curve in En with non-zero curvatures. Then,
n−2

∑
i=1

H2
i (s) is non-zero constant where

Hn−2(s) 6= 0 if and only if the curve α is a rectifying curve.

Proof. Let H2
1 (s)+H2

2 (s)+ ...+H2
n−2(s) be a non-zero constant. From the equation (3.3) , we have that

ki+1(s)Hi(s) = H ′i−1(s)+ ki(s)Hi−2(s), 2≤ i≤ n−2 (3.8)

If we write i+1 instead of i in equation (3.8) , we get

H ′i (s) = ki+2(s)Hi+1(s)− ki+1(s)Hi−1(s), 1≤ i≤ n−3. (3.9)

For i = 1,

H ′1(s) = k3(s)H2(s). (3.10)

We know that H2
1 +H2

2 + ...+H2
n−2 is constant. So we can see that

H1(s)H ′1(s)+H2(s)H ′2(s)+ ...+Hn−2(s)H ′n−2(s) = 0

and

Hn−2(s)H ′n−2(s) =−H1(s)H ′1(s)−H2(s)H ′2(s)− ...−Hn−3(s)H ′n−3(s). (3.11)

If we multiply Hi(s) and H1(s) both sides of the equation (3.9) and equation (3.10), respectively, we get

Hi(s)H ′i (s) = ki+2(s)Hi(s)Hi+1(s)− ki+1(s)Hi−1(s)Hi(s) (3.12)

and

H1(s)H ′1(s) = k3(s)H1(s)H2(s). (3.13)

Hence, from the equations (3.11), (3.12) and (3.13) we can easily show that

Hn−2(s)H ′n−2(s) =−kn−1(s)Hn−3(s)Hn−2(s).
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Since Hn−2(s) 6= 0, we have

H ′n−2(s)+ kn−1(s)Hn−3(s) = 0.

So, from the Corollary 3.2, the curve α is a rectifying curve.
Conversely, assume that α is a rectifying curve. From the Corollary 3.2, we know that the equality

H ′n−2(s)+Hn−3(s)kn−1(s) = 0

is provided. Moreover, for Hn−2 6= 0, we can write

Hn−2(s)H ′n−2(s) =−kn−1(s)Hn−2(s)Hn−3(s).

From the equations (3.13) and (3.12) , we obtain

H1(s)H ′1(s) = k3(s)H1(s)H2(s)

and

for i = n−3, Hn−3H ′n−3 = kn−1Hn−3Hn−2− kn−2Hn−4Hn−3,

for i = n−4, Hn−4H ′n−4 = kn−2Hn−4Hn−3− kn−3Hn−5Hn−4,

for i = n−5, Hn−5H ′n−5 = kn−3Hn−5Hn−4− kn−4Hn−6Hn−5,

...

for i = 2, H2H ′2 = k4H2H3− k3H1H2.

Then it is easy to see that

H1(s)H ′1(s)+H2(s)H ′2(s)+ ...+Hn−3(s)H ′n−3(s)+Hn−2(s)H ′n−2(s) = 0 (3.14)

and

H2
1 (s)+H2

2 (s)+ ...+H2
n−2(s)

is a non-zero constant.

Special Case for nnn === 333

In this part, we will verify the general theory for n = 3 because of the fact that the following characterizations are given in previous works
[2] and [3]. Then, considering the definition of harmonic curvature functions of rectifying curves we show that the theory of paper is right
for n = 3.

Let α be an arc-length parameterized rectifying curve in E3 as follows

α (s) = λ (s)T (s)+µ(s)B(s) (3.15)

with λ ,µ real functions.
If we take the derivative of α , then we have

α
′ (s) = λ

′
(s)T (s)+λ (s)k1(s)N(s)+µ

′
(s)B(s)+µ(s)(−k2(s)N(s))

and if the necessary arrangements are made, it is available

T (s) = λ
′
(s)T (s)+(λ (s)k1(s)−µ(s)k2(s))N(s)+µ

′(s)B(s)

So, we can easily obtain the following equations from the above equality.

i) λ
′
(s) = 1

ii) λ (s)k1(s)−µ(s)k2(s) = 0
iii) µ ′(s) = 0

We will try to determine λ and µ functions with the help of the harmonic curvature of the curve α given in the equation (3.3). Then, the
functions
i) λ (s) = s+ c

ii) µ(s) = λ (s)
k1(s)
k2(s)

= H1(s)

are easily obtained.

Corollary 3.8. Let α be an arc-length parametrized curve in E3 with non-zero curvatures. Then α is congruent to a rectifying curve if and
only if

H ′1(s) = 0 (3.16)

where H1 is the 1th harmonic curvature functions of the curve.
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Corollary 3.9. Let α be an arc-length parametrized curve in E3 with non-zero curvatures. If the curve α is a rectifying, then the position
vector of the curve satisfies

α (s) = (s+ c)T (s)+H1(s)B(s) (3.17)

where H1 is 1th harmonic curvature functions of the curve.

3.2. Rectifying Curves and Focal Curves

In this subsection, some relations between rectifying curve and focal curve are given in n−dimensional Euclidean space.

Theorem 3.10. Let α : I ⊂ R→ En be a curve with {T,N,B1, ...,Bn−2} and Cα be focal curve of α with
{

T ,N,B1, ...,Bn−2
}

. λi,

i ∈ {1,2, ...,n−1} denotes the ith function of the position vector of α and ci, i ∈ {1,2, ...,n−1} denotes the ith focal curvature of the curve
α . Then, the focal curve Cα of the curve α is a rectifying curve if and only if following equation is satisfied

λn−1 =−cn−2. (3.18)

Proof. Let α be an arbitrary curve and Cα be focal curve of the curve α . Then the curve Cα can be written as follows

Cα = λ1T +λ2N +λ3B1 + ...+λnBn−2 + c1N + c2B1 + c3B2 + ...+ cn−1Bn−2.

If we rearrange the Cα by using
{

T ,N,B1,B2, ...,Bn−2
}

from the equation (2.5) , we get

Cα = λ1Bn−2 +λ2Bn−3 + ...+λnT + c1Bn−3 + c2Bn−4 + ...+ cn−1T ,

Cα = (λn + cn−1)T +(λn−1 + cn−2)N + ...+(λ2 + c1)Bn−3 +λ1Bn−2.

Since, Cα is a rectifying curve, following equality is available

λn−1 + cn−2 = 0.

Conversely, assume that equation (3.18) is provided. Then we can easily see that Cα is a rectifying curve.

In the following part, we will give the properties of rectifying curve with the focal curve in the 3−dimensional Euclidean space according to
the Frenet apparatus {T,N,B,k1,k2}.

Corollary 3.11. Let α : I ⊂ R→ E3 be an arbitrary curve with {T,N,B,k1,k2} and Cα be focal curve of α with
{

T ,N,B,k1,k2
}

in
the 3−dimensional Euclidean space. λ1,λ2,λ3 denotes the functions of the position vector of α and c1,c2 denotes functions of the focal
curvature of the curve α . Then, the focal curve Cα of α is a rectifying curve if and only if following equality holds

λ2 =−c1. (3.19)

Corollary 3.12. Let α : I ⊂R→ E3 be a curve with {T,N,B} and Cα be focal curve of α with
{

T ,N,B
}

İf the curve α is a rectifying curve,
the focal curve Cα can not be rectifying curve.

Proof. Let α be an arbitrary curve with {T,N,B} . We can write α as

α = λ1T +λ2N +λ3B.

If the curve α is a rectifying, then λ2 = 0. But from above theorem, we know that Cα focal curve of α is a rectifying curve if and only if

λ2 =−c1 =−
1
k1

. Consequently, Cα can not be a rectifying curve.

Salkowski curves are defined as curves with constant curvature but non-constant torsion with an explicit parametrization. In the following
two Corollaries, we give a rectifying curve which is a focal curve of a given Salkowski space curve. For this purpose, we will define the
torsion of the given Salkowski curve in Euclidean 3−space.

Corollary 3.13. Let α : I ⊂ R→ E3 be an arbitrary Salkowski curve with {T,N,B} . If the focal curve Cα of α is a rectifying curve, the

torsion of α is equal to k2(s) =
1√

2s
λ1k1

+ c
, ( 2s

λ1k1
+ c)> 0.

Proof. Since α is an arbitrary Salkowski curve, k1(s) is a constant function. Assume that the curve Cα be a rectifying curve. Then, the
theory of focal curves and Theorem 3.3 give that the position vector of the curve α is

α(s) = λ1(s)T (s)+λ2N(s)+λ3(s)B(s) (3.20)

where λ2 =−c1 =− 1
k1

is a constant function. Differentiating the equation (3.20) with respect to s, we obtain

T (s) = (λ
′

1(s)+1)T (s)+(λ1(s)k1−λ3(s)k2(s))N(s)+
(

λ
′
3(s)−

k2(s)
k1

)
B(s).

Then, the equality gives us the following system

λ ′1(s) = 0
λ1(s)k1−λ3(s)k2(s) = 0

λ ′3(s)−
k2(s)

k1
= 0

 (3.21)
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If we consider the equation (3.21), we can easily find the following differential equation(
λ1k1

k2(s)

)′
− k2(s)

k1
= 0 (3.22)

and then the solition of the equation (3.22) is given by

k2(s) =
1√

2s
λ1k1

+ c
,

(
2s

λ1k1
+ c
)
> 0.

Corollary 3.14. Let α : I ⊂ R→ E3 be an arbitrary Salkowski curve with the Frenet frame {T,N,B} . From the above Corollary, we can
write rectifying focal curve such as

Cα (s) = λ1T (s)+
(√

(2s+λ1k1c)λ1k1 + c2

)
B(s)

where λ1,k1,c,c2 are constant functions.

Example 3.15. Let α : I ⊂ R→ E3 be an arbitrary Salkowski curve and Cα be focal curve of the curve α and coefficient functions of the
curve Cα be as follows;

k1 = 1, k2 =
1√
2s

, λ1 = 1, λ2 =−1, λ3 =
√

2s, c1 = 1, c2 = 0.

So, Cα focal curve of α is a rectifying curve such as

Cα (s) = ( f1(s), f2(s), f3(s))

where

f1(s) =
4
√

scos2
√

s− sin2
√

s+2
√

s
2
√

2

f2(s) =
1
2

cos2
√

s+2
√

ssin2
√

s

f3(s) =
−4
√

scos2
√

s+ sin2
√

s+2
√

s
2
√

2
.

The figure of the rectifying focal curve Cα as follows,

Figure 1. The focal curve Cα

4. Conclusion

Harmonic curvature functions used in several previous studies. In this study, by using harmonic curvature functions a new approach on
rectifying curve is given. Characterizing rectifying curves in 3 and 4-dimensional space is easy, but calculations in n−dimensional space
are not so easy. Harmonic curvatures have given us convenience in our operations and simplicity in characterizations. Authors in [5]
characterized rectifying curve in an arbitrary dimensional Euclidean space as

kn−1(s)
n−4

∑
m=0

µn−3,m(s)
∂ m

∂ sm (
k1(s)
k2(s)

)+
n−3

∑
m=0

(µn−2,m(s)
∂ m

∂ sm (
k1(s)
k2(s)

))′ = 0.

We have shown that the µi coefficients in the author’s work correspond to harmonic curvatures in minor adjustments. Hence, we prove this
theory for rectifying curve more simply associating with harmonic curvature functions such as

H ′n−2(s)+Hn−3(s)kn−1(s) = 0.

Also, we give the relationship between rectifying curve and the focal curve in n−dimensional Euclidean space. And give necessary and suffi-
cient conditions in which the focal curve of any space curve is a rectifying curve. Subsequently, we examine the these theories for special case
n= 3. In general, our aim in this study is to examine rectifying curves and focal curves from a different perspective using harmonic curvatures.
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