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ABSTRACT 
The main objective of the present study was to develop and validate a new alternative modelling 
method to predict the shelf-life of food products under non-isothermal storage conditions. The 
bacterial growth data of the Pseudomonas spp. was extracted from published studies conducted 
for aerobically-stored fish, pork and chicken meat and described with two-step and one-step mod-
elling approaches employing different primary models (the modified Gompertz, logistic, Baranyi 
and Huang models) under isothermal storage temperatures. Temperature dependent kinetic param-
eters (maximum specific growth rate ‘µmax’ and lag phase duration ‘λ’) were described as a function 
of storage temperature via the Ratkowsky model integrated with each primary model. The Huang 
model based on the one-step modelling approach yielded the best goodness of fit results (RMSE 
= 0.451 and adjusted-R2 = 0.942) for all food products at isothermal storage conditions, therefore, 
was also used to check it’s the prediction capability under non-isothermal storage conditions. The 
differential form of the Huang model provided satisfactorily statistical indexes (1.075 > Bf > 1.014 
and 1.080 > Af > 1.047) indicating reliably being able to use to describe the growth behaviour of 
Pseudomonas spp. in fish, pork and chicken meat subjected to non-isothermal storage conditions.  

Keywords: Dynamic condition, Microbiological quality, Pseudomonas spp., growth kinetic,    
Predictive microbiology 
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Introduction 
Meat is among nutrient-dense foods and is a source of pro-
tein. Fish, pork and chicken meat play an important role in 
meat industry; however, are highly perishable food products 
even when kept under refrigeration, which may result in an 
important economic loss (Bruckner et al., 2013; Dominguez 
and Schaffner, 2007; Koutsoumanis, 2001). Initial microbial 
quality and storage conditions have a direct effect on prod-
uct shelf-life, and Pseudomonas spp. is one of the most 
abundant bacterial genera, naturally existing in fish, pork 
and chicken microbiota (Bruckner et al., 2013; Ghollasi-
Mood et al., 2017; Lytou et al., 2016; Koutsoumanis, 2001). 

Microbial load in food can be determined with traditional 
microbiological enumeration techniques. Even more, the re-
sults of these techniques give us only information about spe-
cific time and condition. But the growth behaviour of mi-
croorganisms depends on changing environmental factors. 
Therefore, the traditional enumeration techniques are not ad-
equately practical. Predictive microbiology is a tool used to 
describe microbial behaviour in food. Although traditional 
microbiological methods have high costs and time-consum-
ing results, these methods are still used simultaneously with 
predictive microbiology to describe microbial behaviour in 
the development of products and processes (Bovill et al., 
2001). 

The main objective of predictive microbiology is to predict 
microbial behaviour, which can prevent food spoilage as well 
as food-borne illnesses by employing mathematical models. 
Primary and secondary models are commonly used in predic-
tive food microbiology (Whiting, 1995). For the primary 
models, the modified Gompertz, logistic, Baranyi and Huang 
models are the most popular ones describing microbial 
growth data as a function of time at constant environmental 
conditions. The secondary models indicate how obtained the 
growth parameters from primary models change with respect 
to one or more environmental or cultural factors (e.g., gas 
composition, pH, temperature and salt level). Temperature is 
one of the most important environmental factors directly af-
fecting the growth behaviour of microorganisms in foods, and 
its effect is widely described using the Ratkowsky model 
(Ratkowsky et al., 1982). 

Under real life conditions, environmental factors are not al-
ways constant during the pass time for the food product 
reaches consumers (Zwietering et al., 1994). Therefore, dy-
namic models are essential to model by taking into account 
the changing environmental conditions which a food product 
really subjects to (Pérez-Rodríguez and Valero, 2013). Dy-
namic models considering the effect of changing temperature 

are important to model the effect of the temperature on mi-
crobial growth under non-isothermal conditions. 

Generally, the primary and secondary models are separately 
fitted to the growth data and kinetic parameters, respectively 
and this is the most popular modelling procedure followed in 
the predictive food microbiology. But there are some draw-
backs concerning about this modelling approach. The major 
drawback is to lead to be accumulation and propagation of 
errors due to being sequentially performed nonlinear re-
gression two times (Huang, 2017). To avoid these disad-
vantages of two-step modelling approach, alternatively, a 
one-step modelling approach can be applied while simulating 
microbial data and kinetic parameters. In this approach, pri-
mary and secondary modelling for the growth and tempera-
ture (as a changing environmental factor) data is performed 
simultaneously. Therefore, the use of this approach fre-
quently provides better prediction performance, lower uncer-
tainty, more precise coefficients and robust confidence inter-
val than the two-step modelling approach (Jewell, 2012; Mar-
tino and Marks, 2007). 
In the present study, the growth behaviour of Pseudomonas 
spp. naturally existing in fish, pork and chicken microbiota 
were described with both two-step and one-step modelling 
approaches for isothermal storage conditions. The fitting ca-
pabilities of both approaches were compared and the ap-
proach which gave better fitting performance was tested un-
der non-isothermal storage conditions. 

Materials and Methods 
Experimental Data 

The bacterial growth data of Pseudomonas spp. were ex-
tracted from the published works performed for fish, pork and 
chicken meat (Bruckner, 2010; Bruckner et al., 2013; Kout-
soumanis, 2001). While there were six isothermal storage 
conditions (0, 2, 5, 8, 10 and 15 °C) to simulate the bacterial 
growth behaviour for fish (Koutsoumanis, 2001), there were 
five isothermal storage conditions (2, 4, 7, 10 and 15 °C) for 
pork and chicken meat (Bruckner, 2010; Bruckner et al., 
2013). The experimental set-ups to monitor Pseudomonas 
spp. in the targeted food products (fish, pork and chicken 
meat) were explained in detail in the respective studies 
(Bruckner, 2010; Bruckner et al., 2013; Koutsoumanis, 
2001). In brief, food products were transported to the labora-
tory under temperature-controlled refrigeration conditions. 
As soon as they arrived and the initial microbiological anal-
yses of them were performed, and they were started to keep 
at aerobically storage conditions. For microbiological anal-
yses, food samples (25 g) were added aseptically to 225 mL 
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of 0.1% peptone water with salt (NaCl, 0.85% ), and the mix-
ture was homogenized for 60 s with a stomacher. A 10-fold 
dilution series of the homogenate was prepared using saline 
peptone diluents. Appropriate dilutions were transferred to 
Pseudomonas Agar Base with CFC supplement (Oxoid) in-
cubating at 20-25 °C for 48 h. In the current study, data col-
lection process for the growth curves was performed using 
GetData Graph Digitizer 2.26 software (www.getdata-graph-
digitizer.com) by which the growth data points could be ex-
tracted accurately with one decimal precision. 

Modelling 

Four different primary models namely the modified Gom-
pertz (Zwietering et al., 1990), logistic (Zwietering et al., 
1990), Baranyi (Baranyi and Roberts, 1994) and Huang 
(Huang 2017) models were fitted with the two-step and one-
step modelling approaches as they are the most used sigmoid 
functions that describe the bacterial growth behaviour and are 
defined by Eqs (1), (2), (3) and (4), respectively at constant 
environmental conditions:  

y(t) = y0 + (ymax − y0). exp �−exp � µmax.e
(ymax −y0)

. (λ − t) + 1�� (1) 

y(t) = y0 + (ymax−y0)
�1+exp� 4.µmax

(ymax −y0).(λ−t)+2��
   (2) 

y(t) = y0 + µmaxF(t) − l n �1 + eµmaxF(t)−1
e(ymax−y0) � (3) 

y(t) = y0 + ymax − ln (ey0 + [eymax − ey0]. e−µmaxB(t)) (4) 

F(t) and B(t) are the adjustment functions that are respec-
tively described by Baranyi and Roberts (1994) and Huang 
(2017): 

F(t) = t +
1
v

ln�e−vt + e−µmaxλ

− e(−vt−µmaxλ)� 
(5) 

B(t) = t +
1
4

ln�
1 + e−4(t−λ)

1 + e4λ
� 

(6) 

where t is the time (h), y(t) is the concentration of bacterial 
populations (ln CFU/g) at time t, y0 is the initial concentration 

of bacterial populations (ln CFU/g), ymax is the maximum con-
centration of bacterial populations (ln CFU/g), µmax is the 
maximum specific bacterial growth rate (1/h), λ is the dura-
tion of lag phase (h) and v is the rate of increase of limiting 
substrate, assumed to be equal to µmax. 

The Ratkowsky model (Ratkowsky et al., 1982) was em-
ployed for the determination of relationship between storage 
temperature and µmax using the Eq. (7): 

�µmax =  b1(T − T0) (7) 

where T is the storage temperature (°C), T0 is the notional 
temperature (°C), µmax is the maximum specific bacterial 
growth rate (1/h), b1 is the regression coefficient. 

Additionally, λ was defined as a function of µmax with re-
spect to temperature using the Eq (8) (Robinson et al., 1998): 

λ =
b2

µmax (𝑇𝑇)  
 (8) 

where b2 is the regression coefficient, µmax (T) is the a func-
tion of temperature, which leads λ to be defined as a function 
of storage temperature. 

For the two-step and one-step modelling approaches, each of 
the parameters was calculated by means of NonLinearModel 
command which uses Levenberg Marquardt algorithm in the 
Matlab 8.3.0.532 (R2014a) software (MathWorks Inc., Na-
tick, MA, USA). Determination of suitable starting values in 
nonlinear regression procedure is necessary step to estimate 
the accurate parameters. The starting values for the parame-
ters, y0 and ymax were selected as the minimum and maximum 
concentration of bacterial populations considering the entire 
temperature range, respectively. Randomly choosing starting 
points for the parameters, b1, b2 and T0 might lead the esti-
mated parameters to possible local optimal points around 
global one for especially the one-step modelling approach. 
Therefore, the starting points of these parameters were se-
lected by using ga command which uses genetic algorithm in 
Global Optimization Toolbox of Matlab software for the two-
step and one-step modelling approaches. Following success-
ful iteration process for the nonlinear regression procedure, 
the global optimum values of the parameters were obtained. 

Comparison of the Goodness of Fit of the Models 

The comparison of the global models' estimation capabili-
ties was performed by taking into consideration the root 
mean square error (RMSE) and the adjusted coefficient of 
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determination (adjusted-R2) using Eqs. (9) and (10) respec-
tively (Milkievicz et al. 2020): 

RMSE = ��
(observedi − fittedi)2

n − s

n

i=1

 (9) 

adjusted-R2 = 1 − �
n − 1
n − s

� �
SSE
SST

� (10) 

where observedi is the experimental bacterial growth, n is the 
number of experiments, s is the number of parameters of the 
model, SSE is the sum of squares of errors and SST is the 
total sum of squares. RMSE and adjusted-R2 were calculated 
for entire data sets, which correspond to 5 for fish and 6 for 
pork and chicken meat considering observed and fitted values 
as log CFU/g. 

Validation of the Global Model 

Verification of the developed models in the predictive food 
microbiology is crucial to be reliably employed as a simula-
tion tool. The prediction performance of the global model that 
gave the best fitting capability to model the growth behaviour 
of Pseudomonas spp. existing in fish, pork and chicken mi-
crobiota were assessed by considering the growth data ob-
tained from non-isothermal storage conditions. The compari-
son was done considering each of the global models’ corre-
sponding the bias (Bf) and accuracy (Af) factors (Ross, 1996) 
given in Eqs. (11) and (12), respectively: 

Bf = 10
∑ log (ypredicted/yobserved)n
i=1

n  (11) 

Af = 10
∑ �log ( ypredicted/yobserved)�n
i=1

n  (12) 

where ypredicted refers to predicted maximum growth rate (log 
CFU/h), yobserved refers to experimental maximum growth rate 
(log CFU/h), n refers to the number of data.  

The Bf is a measure of average variation between the predic-
tions and observations. The model yielding Bf greater than 1 
is considered as 'fail dangerous', while the model providing 
Bf less than 1 is considered as 'fail safe'. A value of 1 for Bf 
indicates that there is a perfect agreement between the predic-
tions and observations. The Af measures the average differ-
ence between the predictions and observations by disregard-
ing whether the difference is positive or negative. The larger 
Af value, the less accurate is the average estimate (Ross, 

1996). Additionally, two validation criteria known as mean 
deviation (MD) and mean absolute deviation (MAD) were 
calculated to evaluate the prediction capability of the models 
for non-isothermal storage conditions, as stated by Le Marc 
et al. (2008). A value of MD and MAD closing to 0 shows 
that the prediction capability of the model is perfect. 

Results and Discussion 
The growth data of the Pseudomonas spp. existing in fish, 
pork and chicken meat microbiota were fitted using two-step 
and one-step modelling approaches, and the statistical indi-
cates were given in Table 1. RMSE and adjusted-R2 values 
presented in Table 1 indicate the overall fitting capabilities 
for two-step modelling approach, which means that RMSE 
and adjusted-R2 values were calculated after consecutively 
done primary and secondary model fitting for entire data sets 
for each food product. The statistical indices showed that 
Huang model gave the best fitting performance for each food 
product. The fitting capability of the Baranyi model was the 
second. The Modified Gompertz and logistic models yielded 
almost the same fitting capabilities, which means that both of 
the primary models could not estimate the growth behaviour 
of Pseudomonas spp. as good as the Huang and Baranyi mod-
els estimated when the-wo step modelling approach was em-
ployed.  

It is known that the degree of freedom while employing non-
linear regression procedure is important to decrease in uncer-
tainty and increase in reliability of the model parameters 
(Huang, 2017). While doing simulation with one-step model-
ling approach, primary and secondary modelling is per-
formed simultaneously considering whole experimental data 
set, which means that the simulation with one-step modelling 
approach has always higher degrees of freedom than the sim-
ulation with two-step modelling approach. Therefore, the im-
provement obtained from one-step modelling approach can 
be attributed to higher degrees of freedom in one-step model-
ling approach. 

One-step modelling approach, an alternative way to tradition-
ally used two-step modelling approach, was employed to 
quantitatively detect Pseudomonas spp. count. The statistical 
indices, RMSE and adjusted-R2 values, showing the fitting 
capability of one-step modelling approach were presented for 
each food product in Table 1. The RMSE and adjusted-R2 
values of each of the primary models and each food product 
based on one-step modelling approach were calculated max-
imum 0.466 and minimum 0.938, respectively. These results 
showed that no matter which primary model was used, the 
one-step modelling approach gave considerably better pre-
diction performance when the one-step modelling approach 
was employed. Therefore, the growth kinetics obtained from 
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the one-step modelling approach for each food product (fish, 
pork and chicken meat) and each primary model (the modi-
fied Gompertz, logistic, Baranyi and Huang models) were 
given in Table 2.  

The Huang model based on the one-step modelling approach 
showed that maximum counts of Pseudomonas spp. were 8.1 

± 0.1, 9.5 ± 0.1 and 9.4 ± 0.1 for the fish, pork and chicken 
meat, respectively (Table 2), while the maximum counts were 
experimentally found to be of 8.30 ± 0.30, 9.8 ± 0.2 and 9.6 
± 0.2, for the fish, pork and chicken meat, respectively. This 
indicated that the Huang model provided suitable prediction 
performance for maximum counts of Pseudomonas spp. in 
each food product. 

Table 1. Comparison of fitting capability of different primary models based on two-step and one-step modelling approaches 

Food prod-
ucts 

Primary models Modified Gompertz Logistic Baranyi Huang 
Modelling approach 2-step* 1-step 2-step* 1-step 2-step* 1-step 2-step* 1-step 

Fish 
RMSE 0.572 0.466 0.586 0.460 0.567 0.452 0.543 0.451 

Adjusted-R2 0.907 0.938 0.903 0.940 0.909 0.941 0.916 0.942 

Pork 
RMSE 0.609 0.383 0.506 0.406 0.607 0.440 0.573 0.430 

Adjusted-R2 0.941 0.977 0.959 0.974 0.941 0.969 0.948 0.971 

Chicken 
RMSE 0.540 0.260 0.423 0.263 0.389 0.259 0.397 0.256 

Adjusted-R2 0.933 0.984 0.959 0.984 0.965 0.984 0.964 0.985 
   RMSE: root mean square error and Adjusted-R2: adjusted coefficient of determination, calculated overall data sets for each food product 

considering observed and fitted values as log CFU/g. 
* RMSE and adjusted-R2 values calculated after consecutively done primary and secondary model fitting for entire data sets for each food 

product. 
 

 

 

Table 2. Kinetic parameters of Pseudomonas spp. in different food products using one-step modelling approach. 

Food 
product Primary models y0 (log CFU/g) ymax (log CFU/g) T0 (°C) b1 b2 

Fish 

Modified Gompertz 3.4 ± 0.2 8.3 ± 0.1 -8.52 ± 0.50 0.0260 ± 0.0014 2.35 ± 0.88 
Logistic 2.9 ± 0.3 8.2 ± 0.1 -8.55 ± 0.49 0.0255 ± 0.0014 1.25 ± 1.28 
Baranyi 3.3 ± 0.2 8.1 ± 0.1 -8.58 ± 0.46 0.0238 ± 0.0011 1.41 ± 0.69 
Huang 3.4 ± 0.1 8.1 ± 0.1 -8.58 ± 0.46 0.0236 ± 0.0010 1.45 ± 0.51 

Pork 

Modified Gompertz 3.2 ± 0.2 9.8 ± 0.2 -14.30 ± 1.25 0.0179 ± 0.0012 2.65 ± 1.04 
Logistic 2.3 ± 0.1 9.7 ± 0.2 -14.28 ± 1.30 0.0173 ± 0.0011 0.00 ± 0.00 
Baranyi 3.3 ± 0.2 9.5 ± 0.1 -14.01 ± 1.27 0.0165 ± 0.0012 1.61 ± 0.82 
Huang 3.4 ± 0.1 9.5 ± 0.1 -14.03 ± 1.24 0.0165 ± 0.0011 1.78 ± 0.64 

Chicken 

Modified Gompertz 3.9 ± 0.1 9.8 ± 0.2 -7.77 ± 0.37 0.0289 ± 0.0011 2.55 ± 0.65 
Logistic 3.3 ± 0.2 9.6 ± 0.1 -7.76 ± 0.37 0.0284 ± 0.0010 1.14 ± 0.96 
Baranyi 3.9 ± 0.1 9.4 ± 0.1 -7.65 ± 0.35 0.0272 ± 0.0009 1.77 ± 0.46 
Huang 4.0 ± 0.1 9.4 ± 0.1 -7.62 ± 0.35 0.0270 ± 0.0008 1.74 ± 0.36 
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While simulating the growth behaviour of microorganisms, 
accurately determining the exponential phase in which the 
growth rate reaches maximum value and the variations in or-
ganoleptic properties of foods also reach maxima and the lag 
phase in which organoleptic properties almost do not change 
are very important. µmax and λ are the most important critical 
parameters to describe the growth behavior of microorgan-
isms on food, and temperature has a key role in affecting di-
rectly both of these growth parameters (Huang, 2008). The 
kinetic parameters including µmax and λ belonging to Pseudo-
monas spp. for each food product (fish, pork and chicken 
meat) and each primary model (the modified Gompertz, lo-
gistic, Baranyi and Huang models) were shown in Figure 1 
and Figure 2, respectively. As it is expected, the figures 
demonstrate that µmax increased and λ decreased because of 
rising storage temperature. At this point, it needs to be high-
lighted that the logistic model tented to yield λ smaller than 
other primary models (modified Gompertz, Baranyi and 
Huang models) no matter for which food product was. Addi-
tionally, logistic model’s statistical indices about b2, which 
are used to calculate λ, were higher than other models for 
chicken and fish, which means a weakness of the logistic 
model about describing λ. These results are in a good agree-
ment with the findings reported by Tarlak, (2020) for mush-
room. 

Validation is an important step to check how well the devel-
oped models are working. The Huang model is the best pri-
mary model simulating the growth behaviour of Pseudomo-
nas spp. in fish, pork and chicken meat, therefore, Huang 
model was used to test the prediction capability for the Pseu-
domonas spp. concentration under non-isothermal storage 
conditions (Figure 3). The statistical values for validation of 
the Huang model are given in Table 3. Bf and Af were calcu-
lated maximum 1.075 and 1.080, respectively for all food 
products (fish, pork and chicken meat). A Bf and Af of 1 indi-
cates no structural deviation of the model. The Bf factor of 
1.075 indicated that the model overestimates less than 7.5% 
whereas the Af factor of 1.080 showed that on average the 
predicted value was  less than 8.0% different (either smaller 
or larger) from the observed value for each of the food prod-
ucts. In addition, MD and MAD values were less than 0.39 
and 0.41, respectively considering all food products (fish, 
pork and chicken meat). All these statistical indexes show 
that the Huang model can be reliably used to predict the 
growth behaviour of Pseudomonas spp. in fish, pork and 
chicken meat at not only isothermal but also non-isothermal 
storage conditions. Because the spoilage of fish, pork and 
chicken meat is directly linked with Pseudomonas spp. con-
centration, the one-step modelling approach could be also 
used for the prediction of product shelf life.  

 
Figure 1.  The effect of storage temperature on the maxi-

mum specific growth rate (µmax) values obtained 
from one-step modelling approach for (a) fish, (b) 
pork and (c) chicken meat.  
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Figure 2.  The effect of storage temperature on the lag phase 

duration (λ) values obtained from one-step mod-
elling approach for (a) fish, (b) pork and (c) 
chicken meat. 

Table 3. Validation criteria of one-step         
modelling approach based on the 
Huang model. 

Food 
products Bf Af MD MAD 

Fish 1.014 1.059 0.02 0.33 

Pork 1.075 1.080 0.39 0.41 

Chicken 1.016 1.047 0.18 0.31 

 
Figure 3.  The prediction of Pseudomonas spp. concentra-

tion in (a) fish, (b) pork and (c) chicken meat sub-
jected to non-isothermal storage conditions. Ob-
served (*) and predicted (−) Pseudomonas spp. 
concentration. The dashed lines (--) show the 
changing temperature during storage. 

https://doi.org/10.3153/FH21021
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Conclusion 
No matter which primary model was used, the one-step mod-
elling approach considerably improved the prediction capa-
bility of the models, which were published for the quantita-
tive prediction of Pseudomonas spp. concentration in aerobi-
cally stored fish, pork and chicken meat. The successfully 
validated differential form of the Huang model merged with 
the Ratkowsky model provided valuable information to eval-
uate and simulate the growth behaviour of the Pseudomonas 
spp. in aerobically stored fish, pork and chicken meat under 
non-isothermal conditions in which the food products are 
usually subjected to during storage, delivery and retail mar-
keting. The predictive models used in this work have a high 
potential to be used as a simulation tool for the meat proces-
sors to follow the microbiological quality of the food prod-
ucts before they reach to the consumers. 
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