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Abstract 

In recent years there has been a great deal of research and study in the field of visual odometry, which has led to the development of 

practical processes such as visual based measurement in robotics and automotive technology. Direct methods, feature-based methods 

and hybrid methods are three common approaches in solving visual odometry problems and given the general belief that feature-based 

approach speeds are higher, this approach has been welcomed in recent years. Therefore, an attempt has been made in the present 

study to calculate the transformation matrix of two-dimensional sequential image sets using invariant features that can estimate the 

changes in camera rotation and translation. In the algorithm, two-steps of identifying keypoints and removing outliers are performed 

using five different local feature detection algorithms (SURF, SIFT, FAST, STAR, ORB) and RANdom SAmple Consensus algorithm 

(RANSAC), respectively. In addition, the impact of each of them, their intrinsic parameters and dynamic noise on the accuracy of the 

transformation matrix are evaluated and analyzed in terms of rotational MSE and computational runtime. 
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 Introduction 

In late decades, researchers have increased a lot of enthusiasm into visual odometry [1, 2] issues, and they have endeavored to 

give strategies and algorithms to make the process real-time, to improve the accuracy of the outcomes, increase the efficiency of the 

algorithms and reduce their computation and complexity each of which has its own characteristics [14, 16]. Hence, in this paper, 

feature-based technique as a general research approach has been chosen to test and study the impacts of common feature detectors and 

their intrinsic parameters and highlight the trade-off issues between these parameters. 

The extraction of invariant local features, which is the method of detecting different small regions in the image such as corners 

and blobs[2, 5], as well as the selection of suitable algorithms to complement the points extracted[3, 4], play an important role in 

obtaining the correct results for the visual measurement process and its real-time efficiency. 

There are different strategies for phases in the feature-based approaches such as defining points, matching them, and classifying 

them into two classes of keypoints and outliers. To this end, five common local feature detection algorithms (SURF, SIFT, FAST, 

STAR, ORB) are chosen to extract key points as well as the RANdom SAmple Consensus algorithm (RANSAC)[13] as a key point 

classifier to analyze the output of algorithms under various conditions such as dynamic noise. By conducting this comparison research 

and finally obtaining an acceptable precision transformation matrix, visual odometry application processes in the robotics and 

automotive technology industries can be followed. 
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This paper is structured as follows: Section 2 describes the associated visual odometry work [1] through the use of feature 

detectors. A brief overview of five specific feature detectors is given in Section 3. Section 4 records the findings of the analysis and 

the assessment. The article shall be concluded with section 5. 

2. Related Works 

2.1. Feature Detection 

Different methods have been suggested to solve the issue of visual odometry using feature detectors. For example, in [1] using 

the Harris corner detector developed by Harris [9], local image features are identified and used by Nister in visual odometry. 

Nevertheless, there is a lack of scale-invariance and intensity-invariance [19] which fail when images vary in sizes or pixel intensities 

or become noisy [10]. A procedure for treating scale and rotation invariance using the principle of Differences of Gaussian (DoG) was 

introduced in [11]. This feature detector called Scale Invariant Feature Transform (SIFT) used blobs to detect image features. 

Nonetheless, this method suffered from a high computation issue. In order to resolve this downside, Bay et al. [12] proposed Speeded 

Up Robust Feature (SURF) which detects features based on the Hessian matrix. Agrawal et al. proposed CenSurE which later STAR 

detector was derived based on it in [15, 8]. This method has improved computational efficiency compared to SIFT and SURF. In 

addition, Features from the Accelerated Segment Test (FAST) were implemented in [6], which had the advantage of higher 

computational performance compared to previous methods [7]. 

2.2. Feature-based Visual Odometry 

In addition to standard SfM, various robust and reliable visual odometry systems have been developed that provide loop 

detections. Loop detection allows the visual odometry system to track loops and modify the previous trajectories on that basis. The 

mechanism is outlined in more depth in [20]. They combine the feature detection with the optical flow for visual odometry. The same 

task was aimed in [21] by looking for repeatable features. It is proposed in [23] that an efficient method of noise removal has had a 

high impact on feature-based visual odometry approaches such as [24]. In [22], certain robust features are applied to the main system 

in order to achieve a robot motion calculation. It will assist the application of the Simultaneous Localization and Mapping (SLAM). 

ORB-SLAM2 is one of the most important SLAM methods based on the ORB features. This technique was developed not only to 

track the position and detect the loop, but also to reconstruct the 3D model by generating a point cloud of the observed features. The 

latter function is particularly useful for simultaneous mapping of the world when executing a localization task [19]. 

2.3. Feature-based Visual Odometry 

Numerous publications are available in the literature on the subject of the comparison of features. A contrast of SIFT and SURF 

was made in evaluating their efficiency [27] but not in visual odometry. The efficiency of Harris, SIFT, SURF and KLT for structure 

from motion ( SfM) was evaluated in [24]. BRISK was suggested in [25] and was compared with feature detectors SIFT and SURF. A 

drift and translation error comparison of the visual odometry features of SIFT, SURF, ORB and A-KAZE was evaluated in [26]. 

3. Feature Detectors 

3.1. SIFT 

SIFT recognizes blobs as local features and has the advantage of scale invariance and rotation invariance [11]. The scale 

invariance is done by a process called Difference of Gaussians and dividing the scale-space which is a function of L (x, y, 𝝈) into 

different smaller images. Images get smaller every time by half of the previous one and the operation of Gaussian kernel or blurring. 

 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)                 (1) 

 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎
𝑒

−(𝑥2+𝑦2)

2𝜎2                          (2) 

 

Where I is the image, G is the Gaussian blur, x and y are the coordinates and 𝝈 is the scale factor. 

3.2. SURF 

SURF is composed of two general steps: First one is the feature extraction that detects the keypoints in the image and the second 

one is the feature description that is used for feature matching [12]. In order to speed up the computation time SURF uses Hessian 

matrix-based interest points which after adapting it to scale and rotation invariance is defined as: 

 

𝐻(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎) 𝐿𝑦𝑦(𝑥, 𝜎)
]             (3) 
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Where H is the Hessian matrix and L(x, 𝜎) is the Gaussian blur discussed in the previous section. 

3.3. FAST 

This method considers 16 pixels around the processing pixel to decide whether it’s a keypoint or not. This way it doesn’t need to 

process the whole image pixels and thus results in faster computation and real-time detection of features [6, 7]. 

 

3.4. STAR 

This feature detector is a derived version of CenSurE and was developed by the OpenCV library. STAR too is a scale and rotation 

invariant detector that uses Laplacian of Gaussians (LoG) and instead of complete circle masking it takes account two 45-degree 

difference overlapped squares as an approximation of it [8, 15]. 

3.5. ORB 

Oriented FAST and Rotated BRIEF (ORB) is a combined version of Features from Accelerated Segment Test (FAST) Feature 

detector and Binary Robust Independent Elementary Features (BRIEF) feature descriptor [17]. 

4. Performance Evaluation and Trade-Offs 

4.1. Performance Evaluation 

In evaluating the experimental results, two comparable criteria were the rotational mean square error (MSE) and computational 

time. This includes the error rate of camera rotation, feature detection techniques and finally how long it took to perform visual 

odometry. The feature detectors, dataset sequences and their respective rotational MSE is shown in Table I. In the experiments, 

threshold, number of feature detections and intrinsic parameters were configured as give the best possible translational performance 

with least rotational MSE. Table II depicts the computational runtime of each sequence of dataset on all feature detectors. The impacts 

of each feature detector and their tradeoffs are discussed in the next section. 

In order to evaluate the performance of the feature detectors in visual odometry, the famous KITTI’s grayscale dataset with 

resolution of 1241 x 376 pixels was used on a system with Intel's 9th generation core i7 that had 16GB RAM. 

As can be seen in Table I, the most rotational error has happened in seq_00 of the Kitti dataset and the cause of this high error rate 

is the movement of other vehicles while the camera was waiting in the traffic light. The reason for this is that traditional visual 

odometry cannot handle such situations and there was no loop detection or other optimization algorithms implemented in our 

experiments. Please note that, the same situation happens in seq_07 too. As can be observed, in both times FAST had the best 

performance with 2.3082 and 0.1434 respectively. However, the least performance was different in two dataset sequences. In the first 

one the highest error rate was with the ORB feature detector and the in the seq_07 the least performance was with the SURF. 

 

 

 

 

Fig. 1 FAST looks at the 16 pixels around the pixel p to detect 

features. 
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Seq Frames SIFT SURF STAR FAST ORB 

00 4540 3.5692 4.59843 4.52235 2.3082 7.90480 

01 1100 0.0353 0.13101 0.28460 0.0215 0.03479 

02 4660 0.0927 0.08051 0.11423 0.0406 0.08904 

03 800 0.0182 0.01759 0.1422 0.0225 0.03328 

04 270 0.0006 0.00068 0.0009 0.0005 0.0006 

05 2760 0.8082 1.26559 0.94318 0.4613 1.10614 

06 1100 0.0185 0.02107 0.01381 0.0312 0.01693 

07 1100 3.5233 3.26835 7.19671 0.1434 2.77622 

08 4070 0.1634 0.15540 0.11701 0.0394 0.10918 

09 1590 0.0322 0.02263 0.13907 0.0223 0.01656 

10 1200 0.0636 0.34598 0.19013 0.0510 0.25826 

 

Moreover, the trajectory diagram of visual odometry of seq_02 using five feature detectors has been given as an example in 

figure 3. In this figure, all five feature detectors had a reasonable performance when there is less noise and velocity deviation in the 

dataset. Similarly, as previous sequences the best performance was in FAST and SURF, ORB, SIFT and STAR subsequently. 

However, as shown in figure 2 the rates in terms of computational runtime was different that rotational MSE. In computational 

runtime, the best number was with STAR almost in all dataset sequences and the least performance was with SIFT. In the 

experiments, it was observed that even if FAST feature detector performed slower compared to STAR in terms of computational 

runtime, it had the best overall performance when rotational error also was taken in account. 

4.2. Trade-Offs 

As it is observed from the results in figure 2 the error rate is somewhat related to the amount of dataset. This is because visual 

odometry is an accumulative method that error rates get accumulated in every frame step. Please note that, the computation runtime 

Table 1. MSE 

Fig 2. Computational Runtime of visual odometry using five different feature 

detection algorithms 
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gets better in each method through the developed phases as shown in figure 3. The fastest one was STAR and then FAST, SURF, ORB 

and SIFT subsequently. 

In terms of accuracy and reliability, as can be seen in figure 2 the most accurate and reliable one is the FAST algorithm. However, 

it takes more runtime compared to ORB feature detection. ORB feature detectors are faster compared to other methods but at the cost 

of a little accuracy loss. In addition to that, all the above methods were observed to be vulnerable against dynamic movement while 

stable state of the camera. Moreover, the accuracy and the computation runtime of the final visual odometry results are highly 

dependent on configured parameters such as threshold and number of features detected. For example, the number of features detected 

in the above experiments were set to 10000 to get the best accuracy. It was observed that, as we minimized the number of features the 

computation runtime was noticeably decreased however the accuracy of the system decreased too. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

This paper studies the impacts of five common feature detectors (SIFT, SURF, STAR, FAST, ORB) and their intrinsic parameters 

on the performance of transformation matrix extraction in terms of rotational MSE and computation runtime in visual odometry. After 

the experimental evaluation and analysis of results it was proved that FAST outperformed other feature detectors in the accuracy of 

visual odometry and the ORB and STAR had better computational runtime with the cost of degradation in accuracy. In addition to 

that, it was observed that the intrinsic parameters such as configured threshold and number of features detected in the image highly 

affects the performance and computational efficiency of the visual odometry. 
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