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Abstract: The purpose of this study was to determine the number of samples that should be used in independent treatment 
comparisons with different effect sizes (0.25-3.0), the number of treatments (2-5), and the power of the test (70% -95%) in 
single and multi-factor treatments. The material of the study was the random numbers drawn from the population that shows 
a normal distribution with N (0, 1) parameter. The power of the test was calculated by sampling with replacement from the 
population and after the differences between the treatments in terms of standard deviation were established, 10000 simulations 
were performed.  This setup was carried out for experiments with one, two, and three factors. In the comparison of single 
factor independent treatment means, when the effect size was larger than Δ = 2 and the test power was between 70% and 95%, 
the sample sizes varied between 3 and 7. In the comparison of two-factor independent treatment means, when the effect size 
was larger than Δ = 2 and the test power was between 70% and 95%, the sample sizes varied between 2 and 3. In the 
comparison of three-factor independent treatment means, when the effect size was larger than Δ= 1.5 and the test power was 
between 70% and 95%, the sample size was 2. If all treatment comparisons were generalized; it was observed that when the 
effect size increased, and the power of the test decreased, the sample size decreased In the t-test and F tests used in independent 
treatment comparisons, a power analysis was performed under different situations, and the number of experimental units for 
each 5% power increment between 70% and 95% were presented in tables. These tables, may help researchers to determine 
the number of samples without power analysis in independent group comparisons. 
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1. Introduction
Statistics is classified as descriptive and inferential 
and serves two purposes. Descriptive statistics are 
used to show what has been obtained from the study 
descriptively, and inferential statistics are used to 
make an inference from the results by using 
appropriate statistical tests. The basic principle of 
inferential statistics is to estimate population 
parameters by using sample values in terms of the 
trait discussed (Zar, 2013). However, the most 
important factor here is to know whether the 
findings obtained through the sample are suitable 
for the whole population or not. Treatment 
comparisons are one of the most used inferential 
statistics methods in scientific research (Keskin and 
Özsoy, 2004). While the t-test is used to investigate 

the difference between the means of two 
independent treatments in terms of the attribute 
under consideration, the variance analysis 
technique (ANOVA F) is used to examine the 
difference between the means of more than two 
independent treatments (Mendeş, 2004). 

In independent treatment comparisons, while 
the difference between treatment means does not 
give clear information to the researcher, the effect 
size which is also a measure of the standardized 
difference between the treatment means could 
provide this information. Therefore, the effect size 
is important in comparing the results of any two 
studies in terms of the same variables. In this way, 
it helps to determine the level of the investigated 
factor and how effective it is in explaining the 
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variable under consideration. Determination of the 
power of the test or the number of individuals in the 
sample to reach a certain power is estimating the 
effect size (Taylor and Gerrodette, 1993). Starting 
power analysis by the determining effect size 
eliminates most of the obstacles that may arise. 

Power analysis is an analysis conducted to 
check the accuracy of the decisions made as a result 
of a study and additionally, it is a statistical method 
used to determine the optimum sample size required 
for research to succeed. As a result of the hypothesis 
control, the power of the test theoretically varies 
between 0 and 1. In general, it is desired to have the 
power of the test 80% and above (Cozby and Bates, 
2012), however, if it is below 50%, this does not 
allow a reliable comment on the results of the study. 
The results of such studies may also contain 
misinformation for the population (Murphy and 
Myors, 2004). Power analysis can be conducted 
either at the beginning or at the end of the study. 
power analysis conducted at the beginning of the 
study is used to obtain the target power and to 
estimate the required sample size. The real power of 
the study can be calculated with the power analysis 
performed at the end of the study. 

In recent years, power analysis has been widely 
used in hypothesis testing protocols, especially in 
applied sciences (Peterman, 1990; Fairweather, 
1991; Muller and Benignus, 1992; Searcy-Bernal, 
1994; Thomas and Juanes, 1996; Thomas, 1997). 
Power analysis is now perceived as a universal step 
of scientific studies. In addition, the power of the 
test can be easily calculated with the help of sample 
size, effect size, and variance (standard deviation) 
(Lewis, 2006). Generally, the researchers determine 
the power of the test before planning the study and 
determine the required optimum sample size after 
determining the factor levels and the effect size and 
variance (standard deviation) of the variables that 
they will consider from the literature information. 
In this way, determining the sample size before 
starting the research helps to determine the 
boundaries of the study and to find project 
financing, thus time and money are not wasted. 

The purpose of this study was to determine 
suitable sample size of the single factor and multi-
factorial experiments for different effects sizes 
(between 0.25 and 3.0,) the number of treatments 
(between 2 and 5,) and the power of the test 
(between 70% and 95%) with 5% increment. 
Obtained results are presented and discussed in 
tables. 
 
2. Materials and Methods 
The material of the study consisted of the random 
samples with replacement drawn from the 

population showing a normal distribution with N  
(0, 1) parameter. The experimental approach of the 
power of the test in the simulation study was that 
two populations with a mean µx and µy variances σ 𝑥𝑥𝑥𝑥2 
and σ 𝑦𝑦𝑦𝑦2   were normally distributed in terms of the 
examined variables and were assumed to be µx= µy 
+ 1Δ. The number of observations observed after 
10000 simulations at different power values (70% -
95%) under different effect sizes were determined. 

The effect size, in other words, the difference 
between the means in terms of standard deviation 
was obtained by using Equation 1. 

∆ =  (𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴−𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵)
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝

                                                                     (1) 

Mathematical model of the test in two treatment 
comparisons (t-test). The t-test used for two 
independent comparisons was expressed in the 
mathematical model as in Equation 2:  

Yij= μ+ τi+eij                                                                     (2) 

These equations represent, Yij is the jth 

observation on the ith treatment, µ is overall mean, 
τi is the effect of treatment ith, ε(ij) is random error 
terms. 

The mathematical model of the F test used in 
single-factor independent treatment comparisons 
was more than 3, as in Equation 3. 

Yij= μ+ αi+eij                                                                    (3) 

Where, Yij is the jth observation on the ith 
treatment, µ is overall mean, αi is the effect of 
treatment ith, ε(ij) is random error terms. 

The mathematical model of the F test used in 
multi-factor independent treatment comparisons 
was given in Equation 4. 

Yijk = µ + αi + βj + αβij + εijk                                       (4) 

Where, Yij  is the kth observation on the ith 
treatment with jth treatment, µ is overall mean, αi is 
the effect of treatment ith, βj is the effect of 
treatment jth, αβij is the effect for the interaction of 
the ith treatment with jth treatment, ε(ijk) is random 
error terms. 

Mathematical models of t and F test statistics, 
which are widely used in independent treatment 
comparisons in the study, are given in Equations 2, 
3, and 4. By using different power and different 
effect sizes of these tests, sample sizes were 
determined by the Monte Carlo simulation 
technique. 
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3. Results and Discussion 
In single and multi-factor experiments, simulations 
conducted to determine the optimum sample size 
were designed to have different effect sizes and 
power. The sample size for single, two, and three-
factor experiments with different effect sizes and 
power is given in Tables 1, 2, and 3, respectively. 

It was observed that for the t-test, the sample 
size was 199 when power was 70% and the effect 
size was 0.25 when Table 1 was examined. For the 
same t-test (2 treatments) when the effect size was 
kept at 0.25, sample sizes were 224, 253, 289, 338 
and 417 for power rates of 75%, 80%, 85%, 90%, 
and 95%, respectively. Again for t-test when effect 
size was 1.5, sample size were 7, 8, 9, 10, 11 and 13 
for power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively (Table 1). When the effect size 
was Δ= 2.0 or above, in the comparison of two 
independent means, there was not much change in 
the sample size even if the test power changes. Our 
study had similar results with previous studies with 
2 treatments and different effect size and power 
(Başpınar and Gürbüz, 2000; Lenth, 2007; Ellis, 
2010). However, our results did not agree with other 
studies which may have non-homogenous 
population or used different sampling methods 
(Başpınar et al., 1999; Başpınar, 2001; Mendeş, 
2002; Koşkan and Gürbüz, 2008; Boyar, 2019).  

While there were 3 treatments and effect size 
was 0.5, sample size was 63, 70, 79, 89, 103 and 
125 for power rates of 70%, 75%, 80%, 85%, 90% 
and 95%, respectively. For the same 3 treatments 
when effect size was 2.5, sample size was 4, 4, 5, 5, 
6 and 7 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively (Table 1). 

There were 4 treatments and effect size was 
0.25, sample size was 283, 314, 350, 395, 455 and 
551 for power rates of 70%, 75%, 80%, 85%, 90% 
and 95%, respectively. For the same 4 treatments 
when effect size was 3.0, sample size was 4, 4, 4, 4, 
5 and 5 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively (Table 1). 

When there were 5 treatments and effect size 
was 0.25 (low), sample size was 311, 345, 383, 431, 
494 and 596 for power rates of 70%, 75%, 80%, 
85%, 90% and 95%, respectively. For the same 5 
treatments when effect size was 0.5 (medium), 
sample size was 79, 87, 97, 109, 125 and 150 for 
power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For 5 treatments when effect size 
was 0.75 (high), sample size was 36, 40, 44, 49, 56 
and 67 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively. For 5 treatments when 
effect size was 1.00 (very high), sample size was 21, 
23, 25, 28, 32 and 39 for power rates of 70%, 75%, 
80%, 85%, 90% and 95%, respectively (Table 1). 

 

Table 1. Sample sizes for comparing the single-factor independent treatment means 
Test 

statistics 
Number of 
treatments 1-β Δ=0.25 Δ=0.5 Δ=0.75 Δ=1 Δ=1.25 Δ=1.5 Δ=2 Δ=2.5 Δ=3 

t 2 

0.70 199 51 23 14 9 7 5 4 3 
0.75 224 57 26 15 10 8 5 4 3 
0.80 253 64 29 17 12 9 6 4 4 
0.85 289 73 33 19 13 10 6 5 4 
0.90 338 86 39 23 15 11 7 5 4 
0.95 417 105 48 27 18 13 8 6 5 

F 3 

0.70 248 63 29 17 11 8 5 4 3 
0.75 276 70 32 19 13 9 6 4 4 
0.80 310 79 36 21 14 10 6 5 4 
0.85 351 89 40 23 16 11 7 5 4 
0.90 406 103 47 27 18 13 8 6 5 
0.95 496 125 56 32 21 15 9 7 5 

F 4 

0.70 283 72 33 19 13 9 6 4 4 
0.75 314 80 36 21 14 10 6 5 4 
0.80 350 89 40 23 15 11 7 5 4 
0.85 395 100 45 26 17 12 8 6 4 
0.90 455 115 52 30 20 14 9 6 5 
0.95 551 139 63 36 23 17 10 7 5 

F 5 

0.70 311 79 36 21 14 10 6 5 4 
0.75 345 87 40 23 15 11 7 5 4 
0.80 383 97 44 25 17 12 7 5 4 
0.85 431 109 49 28 19 13 8 6 5 
0.90 494 125 56 32 21 15 9 6 5 
0.95 596 150 67 39 25 18 11 7 6 
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Table 2. Sample sizes for comparing two-factor independent treatment means 

Test 
statistics 

Number 
of 

factors 

Number 
of 

levels 
1-β Δ=0.25 Δ=0.5    Δ=0.75 Δ=1  Δ=1.25 Δ=1.5 Δ=2 Δ=2.5 Δ=3 

F 

2 2:2 0.70 100 26 12 7 5 4 3 2 2 
2 2:2 0.75 112 29 13 8 6 4 3 2 2 
2 2:2 0.80 127 32 15 9 6 5 3 3 2 
2 2:2 0.85 145 37 17 10 7 5 3 3 2 
2 2:2 0.90 169 43 20 12 8 6 4 3 3 
2 2:2 0.95 209 53 24 14 9 7 4 3 3 
2 2:3 0.70 124 32 15 9 6 5 3 3 2 
2 2:3 0.75 138 35 16 10 7 5 3 3 2 
2 2:3 0.80 155 40 18 11 7 5 4 3 2 
2 2:3 0.85 176 45 20 12 8 6 4 3 3 
2 2:3 0.90 203 52 24 14 9 7 4 3 3 
2 2:3 0.95 248 63 28 16 11 8 5 4 3 
2 2:4 0.70 142 36 17 10 7 5 3 3 2 
2 2:4 0.75 157 40 18 11 7 5 4 3 2 
2 2:4 0.80 175 45 20 12 8 6 4 3 2 
2 2:4 0.85 198 50 23 13 9 7 4 3 3 
2 2:4 0.90 228 58 26 15 10 7 5 3 3 
2 2:4 0.95 276 70 32 18 12 9 5 4 3 
2 3:3 0.70 83 21 10 6 4 3 2 2 2 
2 3:3 0.75 92 24 11 7 5 4 3 2 2 
2 3:3 0.80 104 27 12 7 5 4 3 2 2 
2 3:3 0.85 117 30 14 8 6 4 3 2 2 
2 3:3 0.90 136 35 16 9 6 5 3 2 2 
2 3:3 0.95 166 42 19 11 7 5 4 3 2 
2 3:4 0.70 95 24 11 7 5 4 3 2 2 
2 3:4 0.75 105 27 12 7 5 4 3 2 2 
2 3:4 0.80 117 30 14 8 6 4 3 2 2 
2 3:4 0.85 132 34 15 9 6 5 3 2 2 
2 3:4 0.90 152 39 18 10 7 5 3 3 2 
2 3:4 0.95 184 47 21 12 8 6 4 3 2 
2 4:4 0.70 71 18 9 5 4 3 2 2 2 
2 4:4 0.75 79 20 9 6 4 3 2 2 2 
2 4:4 0.80 88 23 10 6 4 3 2 2 2 
2 4:4 0.85 99 25 12 7 5 4 2 2 2 
2 4:4 0.90 114 29 13 8 5 4 3 2 2 
2 4:4 0.95 138 35 16 9 6 5 3 2 2 

 

Sample sizes for comparing two-factor 
independent treatment means are provided in Table 
2. When Table 2 is examined, it can be observed 
that when the number of factors was 2 and the 
number of levels of each factor was 2: 2 for variance 
analysis in the factorial design, when the effect size 
was 0.25, the sample size was 100, 112, 127, 145, 
169 and 209 for power rates of 70%, 75%, 80%, 
85%, 90%, and 95%, respectively. For the same 
number of factors (2) and number of levels in each 
factor (2.2) when effect size was 0.5 (medium), 
sample size was 26, 29, 32, 37, 43 and 53 for power 
rates of 70%, 75%, 80%, 85%, 90%  and 95%, 
respectively. For the same number of factors (2) and 
the number of levels in each factor (2.2) when the 
effect size was 1.00 (very high), the sample size was 
7, 8, 9, 10, 12 and 14 for power rates of 70%, 75%, 
80%, 85%, 90%, and 95%, respectively (Table 2). 

As the number of factors was 2 and the number 
of levels of each factor was 2:3 for variance analysis 
in the factorial design, when the effect size was 
0.75, the sample size was 15, 16, 18, 20, 24 and 28 
for power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(2) and number of levels in each factor (2:3) when 
the effect size was 2.00, the sample size was 3, 3, 4, 
4, 4 and 5 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively (Table 2). 

While the number of factors was 2 and the 
number of levels of each factor was 2:4 for variance 
analysis in the factorial design, when the effect size 
was 1.25, the sample size was 7, 7, 8, 9, 10 and 12 
for power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(2) and number of levels in each factor (2:4) when 
the effect size was   3.00, the sample size was 2, 2, 2,  
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Table 3. Sample sizes for comparing three-factor independent treatment means 

Test 
statistics 

Number 
of 

factors 

Number 
of levels 1-β Δ=0.25 Δ=0.5    Δ=0.75 Δ=1    Δ=1.25  Δ=1.5 Δ=2 Δ=2.5 Δ=3 

F 

3 2:2:2 0.70 50 13 6 4 3 2 2 2 2 
3 2:2:2 0.75 56 15 7 4 3 3 2 2 2 
3 2:2:2 0.80 64 16 8 5 3 3 2 2 2 
3 2:2:2 0.85 73 19 9 5 4 3 2 2 2 
3 2:2:2 0.90 85 22 10 6 4 3 2 2 2 
3 2:2:2 0.95 105 27 12 7 5 4 3 2 2 
3 2:2:3 0.70 62 16 8 5 3 3 2 2 2 
3 2:2:3 0.75 69 18 8 5 4 3 2 2 2 
3 2:2:3 0.80 78 20 9 6 4 3 2 2 2 
3 2:2:3 0.85 88 23 10 6 4 3 2 2 2 
3 2:2:3 0.90 102 26 12 7 5 4 3 2 2 
3 2:2:3 0.95 124 32 14 9 6 4 3 2 2 
3 2:2:4 0.70 71 18 9 5 4 3 2 2 2 
3 2:2:4 0.75 79 20 9 6 4 3 2 2 2 
3 2:2:4 0.80 88 23 10 6 4 3 2 2 2 
3 2:2:4 0.85 99 25 12 7 5 4 2 2 2 
3 2:2:4 0.90 114 29 13 8 5 4 2 2 2 
3 2:2:4 0.95 138 35 16 9 6 5 2 2 2 
3 2:3:3 0.70 42 11 5 3 2 2 2 2 2 
3 2:3:3 0.75 46 12 6 4 3 2 2 2 2 
3 2:3:3 0.80 52 14 6 4 3 2 2 2 2 
3 2:3:3 0.85 59 15 7 4 3 2 2 2 2 
3 2:3:3 0.90 68 18 8 5 3 3 2 2 2 
3 2:3:3 0.95 83 21 10 6 4 3 2 2 2 
3 2:3:4 0.70 48 12 6 4 3 2 2 2 2 
3 2:3:4 0.75 53 14 6 4 3 2 2 2 2 
3 2:3:4 0.80 59 15 7 4 3 2 2 2 2 
3 2:3:4 0.85 66 17 8 5 3 3 2 2 2 
3 2:3:4 0.90 76 20 9 5 4 3 2 2 2 
3 2:3:4 0.95 92 24 11 6 4 3 2 2 2 
3 3:3:4 0.70 32 8 4 3 2 2 2 2 2 
3 3:3:4 0.75 35 9 4 3 2 2 2 2 2 
3 3:3:4 0.80 39 10 5 3 2 2 2 2 2 
3 3:3:4 0.85 44 12 5 3 2 2 2 2 2 
3 3:3:4 0.90 51 13 6 4 3 2 2 2 2 
3 3:3:4 0.95 62 16 7 4 3 2 2 2 2 
3 3:4:4 0.70 24 6 3 2 2 2 2 2 2 
3 3:4:4 0.75 27 7 4 2 2 2 2 2 2 
3 3:4:4 0.80 30 8 4 2 2 2 2 2 2 
3 3:4:4 0.85 33 9 4 3 2 2 2 2 2 
3 3:4:4 0.90 38 10 5 3 2 2 2 2 2 
3 3:4:4 0.95 46 12 6 3 2 2 2 2 2 
3 4:4:4 0.70 18 5 3 2 2 2 2 2 2 
3 4:4:4 0.75 20 5 3 2 2 2 2 2 2 
3 4:4:4 0.80 22 6 3 2 2 2 2 2 2 
3 4:4:4 0.85 25 7 3 2 2 2 2 2 2 
3 4:4:4 0.90 29 8 4 2 2 2 2 2 2 
3 4:4:4 0.95 35 9 4 3 2 2 2 2 2 

 

3, 3 and 3 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively (Table 2). 

As the number of factors was 2 and the number 
of levels of each factor was 3:3 for variance analysis 
in the factorial design, the effect size was 0.25, the 
sample size was 83, 92, 104, 117, 136 and 166 for 
power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(2) and number of levels in each factor (3:3) when 

the effect size was 3.00, the sample size was 2 for 
all power rates (Table 2). 

When the number of factors was 2 and the 
number of levels of each factor was 3:4 for variance 
analysis in the factorial design, the effect size was 
0.25, the sample size was 95, 105, 117, 132, 152 and 
184 for power rates of 70%, 75%, 80%, 85%, 90% 
and 95%, respectively. For the same number of 
factors (2) and number of levels in each factor (3:4) 



39Türkiye Tarımsal Araştırmalar Dergisi - Turkish Journal of Agricultural Research       8(1): 34-41

ASLAN et al.

when the effect size was 3.00, the sample size was 
7, 7, 8, 9, 10 and 12 for power rates of 70%, 75%, 
80%, 85%, 90% and 95%, respectively (Table 2). 

While the number of factors was 2 and the 
number of levels of each factor was 4:4 for variance 
analysis in the factorial design,  the effect size was 
0.5, the sample size was 18, 18, 23, 25, 29 and 35 
for power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(2) and number of levels in each factor (4:4) when 
the effect size was 2.50, the sample size was 2 for 
all power rates (Table 2). 

Sample sizes for comparing three-factor 
independent treatment means is provided in Table 
3. As Table 3 is examined, it can be observed that 
when the number of factors was 3 and the number 
of levels of each factor was 2:2:2 for variance 
analysis in the factorial design, when the effect size 
was 0.25, the sample size was 50, 56, 64, 73, 85 and 
105 for power rates of 70%, 75%, 80%, 85%, 90% 
and 95%, respectively. For the same number of 
factors (3) and number of levels in each factor 
(2:2:2), when effect size was 0.50 (medium), 
sample size was 13, 15, 16, 19, 22 and 27 for power 
rates of 70%, 75%, 80%, 85%, 90% and 95%, 
respectively. For the same number of factors (3) and 
number of levels in each factor (2:2:2) when the 
effect size was 3.00 (the highest), the sample size 
was 2 for all power rates (Table 3). 

While the number of factors was 3 and the 
number of levels of each factor was 2:2:3 for 
variance analysis in the factorial design, the effect 
size was 0.75, the sample size was 8, 8, 9, 10, 12 
and 14 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively. For the same number 
of factors (3) and number of levels in each factor 
(2:2:3), when the effect size was 1.25, the sample 
size was 3, 4, 4, 4, 5 and 6 for power rates of 70%, 
75%, 80%, 85%, 90% and 95%, respectively (Table 
3). 

As the number of factors was 3 and the number 
of levels of each factor was 2:2:4 for variance 
analysis in the factorial design, the effect size was 
0.50, the sample size was 18, 20, 23, 25, 29 and 35 
for power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(3) and number of levels in each factor (2:2:4) when 
the effect size was 1.25, the sample size was 4, 4, 4, 
5, 5 and 6 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively (Table 3). 

When the number of factors was 3 and the 
number of levels of each factor was 2:3:3 for 
variance analysis in the factorial design, the effect 
size was 0.25, the sample size was 42, 46, 52, 59, 
68 and 83 for power rates of 70%, 75%, 80%, 85%, 

90% and 95%, respectively. For the same number 
of factors (2) and number of levels in each factor 
(2:3:3) when the effect size was 3.00, the sample 
size was 2 for all power rates (Table 3). 

While the number of factors was 3 and the 
number of levels of each factor was 2:3:4 for 
variance analysis in the factorial design, the effect 
size was 0.50, the sample size was 12, 14, 15, 17, 
20 and 24 for power rates of 70%, 75%, 80%, 85%, 
90% and 95%, respectively. For the same number 
of factors (3) and number of levels in each factor 
(2:2:4) when the effect size was 1.25, the sample 
size was 3, 3, 3, 3, 4 and 4 for power rates of 70%, 
75%, 80%, 85%, 90% and 95%, respectively (Table 
3). 

While the number of factors was 3 and the 
number of levels of each factor was 3:3:4 for 
variance analysis in the factorial design, the effect 
size was 0.75, the sample size was 4, 4, 5, 5, 6 and 
7 for power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(3) and number of levels in each factor (3:3:4) when 
the effect size was 1.00, the sample size was 2 for 
all power rates (Table 3). 

As the number of factors was 3 and the number 
of levels of each factor was 4:4:4 for variance 
analysis in the factorial design, the effect size was 
0.25, the sample size was 18, 20, 22, 25, 29 and 35 
for power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(3) and number of levels in each factor (4:4:4) when 
the effect size was 0.50 (medium), the sample size 
was 5, 5, 6, 7, 8 and 9 for power rates of 70%, 75%, 
80%, 85%, 90% and 95%, respectively. For the 
same number of factors (3) and number of levels in 
each factor (4:4:4) when the effect size was 0.75 
(high), the sample size was 3, 3, 3, 3, 4 and 4 for 
power rates of 70%, 75%, 80%, 85%, 90% and 
95%, respectively. For the same number of factors 
(3) and the number of levels in each factor (4:4:4) 
when the effect size was 1.00, the sample size was 
2 for all power rates except 3 for 95% (Table 3). 

It was found that in general, when the effect size 
was either equal to 2.00 or above, the sample size 
was 2, regardless of the power of the test. The 
sample size was 3 when the effect size was 2.00, 
and power was 90% at factor level of 2:2:3, and 
when power was 95% at factor level of 2:2:2 and 
2:2:3. In addition, when the effect size was either 
equal to 2.00 or above, the sample size was 2, at 
factor levels of 3:3:4 and 4:4:4 regardless of the 
power of the test (Table 3). 

Our study does not agree with the results of 
previous studies with 2 and more than 2 treatments 
comparisons that had homogenous variance and 
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with different effect size and power (Başpınar et al., 
1999; Başpınar, 2001; Mendeş, 2002; Koşkan and 
Gürbüz, 2008; Aslan, 2018; Boyar, 2019).  

In the comparison of single factor independent 
treatment means, increasing power and number of 
treatment increased the sample size regardless of 
effect size. Increasing the effect size may provide 
the opportunity to work with a smaller sample size 
(Kul, 2011). The results found by Kul (2011) agrees 
with our results. The previous simulation studies for 
the F test using a power-based homogeneous 
population with normal distribution have similar 
results to ours (Akkartal et al., 2010; Mendeş and 
Yiğit, 2013). However, our results do not agree with 
simulation studies that used non-homogenous 
variances (Wilcox, 1989; Moder, 2010). The 
importance of homogeneity of variances in 
independent treatment comparisons has been 
confirmed by simulation studies (Welch, 1951). 

The F test, which is used in the comparison of 
multi-factor independent treatment means, gave 
similar results as in single-factor means. In multi-
factor variance analysis, the homogeneity of the 
variances of treatment combinations is very 
important (Wilcox, 1989; Yiğit, 2012; Arıcı, 2012). 
The treatment variances of the simulation samples 
of this study were homogeneous, thus making this 
study stronger. The results of the study conducted 
by Yiğit (2012) and Arıcı (2012) are partially in 
agreement with the condition that the group 
variances are taken as homogeneous. It can be 
concluded that the part that is not in agreement is 
due to the number of simulation. 

Our study agrees with Ellis (2010) and Bossi 
(2009) findings regarding the determination of 
sample sizes with the help of power analysis of 
single and multi-factor experiments. 
 
4. Conclusions 
One of the most important issues in the preparation 
stage of scientific studies is to know what the 
required sample size should be to obtain the 
determined power level (MacCallum et al., 1996). 
Within the scope of this subject, statistics package 
programs that only perform power analysis and 
sections within the statistics programs are made 
available to researchers. By using the tables in this 
study, before starting a study, researchers can 
perform a hypothesis check by determining the 
sample size with power between 70% and 95% 
using relevant tables without using power analysis 
or any statistical package program. Thus, 
researchers might be able to find the differences that 
are important in the application as a result of 
hypothesis control. 

In the single and multi-factorial experiment, 
researchers can easily find the number of repetitions 
in independent group comparisons with a certain 
power by the tables created. In this way, after 
determining the factors, levels, and the effect size of 
a considered variable, a sufficient sample size will 
be found without any mathematical application. 
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