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A COMPARATIVE STUDY ON THE PERFORMANCE OF
FREQUENTIST AND BAYESIAN ESTIMATION METHODS

UNDER SEPARATION IN LOGISTIC REGRESSION
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Department of Statistics, Sinop University, 57000 Sinop, TURKEY

Abstract. Separation is one of the most commonly encountered estimation
problems in the context of logistic regression, which often occurs with small
and medium sample sizes. The method of maximum likelihood (MLE; [8])
provides spuriously high parameter estimates and their standard errors under
separation in logistic regression. Many researchers in social sciences utilize
simple but ad-hoc solutions to overcome this issue, such as “doing nothing
strategy”, removing variable(s) from the model, and combining the levels of
the categorical variable in the data causing separation etc. The limitations of
these basic solutions have motivated researchers to use more appropriate and
innovative estimation techniques to deal with the problem. However, the per-
formance and comparison of these techniques have not been fully investigated
yet. The main goal of this paper is to close this research gap by comparing the
performance of frequentist and Bayesian estimation methods for coping with
separation. A simulation study is performed to investigate the performance of
asymptotic, bootstrap-based, and Bayesian estimation techniques with respect
to bias, precision, and accuracy measures under separation. In line with the
simulation study, a real-data example is used to illustrate how to utilize these
methods to solve separation in logistic regression.

1. Introduction

The logistic regression is a well-founded analysis technique that can be utilized
to determine the relationship between a dichotomous outcome and a set of cate-
gorical and/or continuous predictors. Although researchers in social sciences often
do not encounter challenges in applying this technique to their data sets, compli-
cations may arise when a linear combination of predictors allocate the values of
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outcome, which is called the separation problem [1]. To illustrate the separation
problem in logistic regression, consider the simplest scenario in which a dichoto-
mous response is predicted by a continuous predictor. Suppose that the outcome
has the values of R = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1} and the predictor has the values of
P = {2, 7, 3, 5, 6, 9, 14, 10, 12, 16}. In this case, the values of response are zero when
the values of predictor are smaller than 8 and the values of response are 1 for the
values of predictor greater than 8. This implies that the probability of observ-
ing zero or one is perfectly predicted (known as complete separation) and there is
nothing left to be estimated. When separation occurs, the method of maximum
likelihood (MLE; [8]) does not provide a reliable set of parameter estimates and
their standard errors, which in turn cause to obtain undependable test statistics.
Many researchers benefit from basic (but ad-hoc) solutions to overcome separation
in logistic regression.
Since separation does not necessarily have a negative influence on all parameters

in the model, some researchers do not pay special attention to this issue by simply
and only reporting their results with respect to chi-square test statistics; although
these statistics are only correct for non-problematic variables in the data. However,
these variables often interact with problematic ones, and thus, the estimates and
standard errors of these interactions should not be trusted either. Moreover, if the
variable causing separation is categorical, then the estimates obtained for other
variables in the model are not interpretable, since they are determined on the
basis of the reference level of this categorical variable. Some researchers avoid
these issues by removing the problematic variable(s) from the model. However,
this approach is subject to two main drawbacks. First, discarding an important
variable may end up with an inappropriate model specification, and consequently, a
set of bias estimates for model parameters, which is known as the omitted variable
bias [24]. Second, even if a predictor causing separation has an insignificant (or
weakly significant) effect on the outcome, caution should be taken when eliminating
this variable from the model, since it can be a confounder. That is, the relationship
between this variable and the outcome may influence the outcome’s associations
with other variables in the model. Another common way of coping with this issue
is combining the levels of variable causing separation, which is only applicable when
this variable is categorical. This approach is also not recommended not only because
collapsing categories alter the research question at hand, but also because it may
cause the loss of information obtained from the data [1].
In response to these challenges, many researchers focus on more complicated

but powerful data analysis techniques to deal with separation in logistic regression.
Heinze and Schemper [14] compare the performance of Firth’s penalized maximum
likelihood estimation (PMLE; [7]) against the method of maximum likelihood [8],
an imputation method using Bayesian logistic regression [3], and exact logistic re-
gression [22]. This study is limited in the sense that it investigates the performance
of only these four methods with respect to (only) bias measures. In the discussion
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of their study, they suggest the use of Firth’s method to cope with separation in
logistic regression. Moreover, they state that the separation problem may not only
occur in the original sample, but it may also occur in bootstrap samples. However,
they do not inspect the performance of Firth’s method in the context of bootstrap-
ping. Ohkura and Kamakura [28] utilized nonparametric bootstrapping in con-
junction with Firth’s method to compare the performance of their bootstrap-base
test against Wald and Firth’s tests under separation. However, the performance of
Firth’s method with nonparametric bootstrapping has not been compared against
any Bayesian estimation method and the usual Firth’s method with respect to bias,
precision and accuracy measures. This study aims at filling this gap by investigat-
ing and comparing the performance of frequentist and Bayesian estimation methods
with respect to bias, precision, and accuracy measures, respectively. Here, frequen-
tist way of coping with separation is performed using Firth’s method [7] and its
counterpart with nonparametric bootstrapping [6]. The choice of prior distribution
is a crucial point to solve separation in logistic regression using Bayesian methods.
Thus, the Markov Chain Monte Carlo (MCMC) algorithms are utilized as Bayesian
solutions to separation using seven different priors.
The outline of the paper is as follows. In Sections 2 and 3, the logistic regression

and the separation problem in logistic regression are elaborated, respectively. In
Section 4, three methods used to obtain the estimates of model parameters and
their standard errors under separation are described. In Section 5, a simulation
study is performed to investigate and compare the performance of these methods
with respect to bias, precision, and accuracy measures. In Section 6, a real life
example is presented to exemplify how to deal with separation using these esti-
mation techniques in logistic regression. The paper will be concluded with a brief
discussion.

2. Logistic Regression Modeling

The logistic regression is one of the most commonly used analysis techniques to
predict a binary outcome (containing zeros and ones) in the context of generalized
linear models [21]. The logistic regression model is defined as:

f(πi) = xTi β , i = 1, 2, ..., N, (1)

where πi = E(yi) is the expected value of the binary outcome for the ith obser-
vation, β = (β0, β1, ..., βP−1)

T ∈ IRP×1 is the vector of model parameters and
xTi = (1, xi1, xi2, ..., xi(P−1)) ∈ IRN×P is the design matrix containing ones in the
first column as the coeffi cients of the intercept, β0, and the values of the explana-
tory variables in the data, respectively. The logit link function, f(πi), relates the
expected values of the outcome to the linear predictor, xTi β:

f(πi) = log(
πi

1− πi
), (2)

where πi =
exp(xTi β)

1+exp(xTi β)
, which is also known as the conditional probability of success.
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Since the outcome containing 0’s and 1’s has a Bernoulli distribution with the
probability of success πi for the ith observation, the likelihood function of the data
can be defined as follows:

L(β | y1, y2, ..., yN ) =

N∏
i=1

πyii ( 1− πi)1−yi , (3)

where yi ∈ {0, 1} for i = 1, 2, ..., N . The likelihood function above is not easy to
differentiate, and thus, it is transformed from the original scale into the log scale:

log L(β | y1, y2, ..., yN ) =

N∑
i=1

yi log (πi) + (1− yi) log ( 1− πi ). (4)

The β’s are estimated by maximizing the log likelihood function above using the
method of maximum likelihood [8], so that the data at hand have the highest
probability of being observed. This is done by differentiating the log likelihood
function above with respect to the β’s, setting the resulting functions to zeros and
solving the equations for each of β’s, respectively.
Since the maximum likelihood estimates of model parameters, the β̂’s, and their

standard errors do not involve closed-form solutions, they are obtained numerically.
This can be achieved quickly and conveniently by utilizing computer-intensive iter-
ative methods such as the Newton-Raphson algorithm [27]. However, there may be
certain situations in which even the numerical methods fail to provide parameter
estimates and their standard errors. In the next section, one of these situations
called the separation problem will be elaborated.

3. Separation Problem

The logistic regression cannot always be easily used to predict a dichotomous
outcome containing zeros and ones. One common issue that arises when estimating
model parameters and their standard errors in the context of logistic regression
causing (nearly) perfect allocation of the values of an outcome in the data at hand
is called the (quasi) complete separation problem [1]. In a regular situation in which
there is no problem of (quasi) complete separation, the expected probabilities of an
outcome for a logistic regression model can take values between the numbers 0 and
1. In complete separation, since a linear function of predictor(s) perfectly predicts
the outcome, the expected probabilities are either 0 or 1 (and not between these
values). Similarly, in quasi complete separation, since the values of an outcome
almost perfectly predicted, almost all expected probabilities (but not all of them)
are either 0 or 1.
Figure 1 is created based on two empirical data sets given in the study of [33,

p. 276], which shows the scatter plot of the values of an outcome against that of
a linear predictor in the presence of complete and quasi-complete separation. As
can be seen on the left panel of the figure for the first data, the values of the linear
predictor perfectly separate the values of the outcome. Thus, only by observing the
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plot, we can make a perfect inference about the predicted values of the outcome.
That is, the predicted values of the outcome take the value of zero when the linear
predictor is smaller than zero and take the value of one when the linear predictor
is larger than one. Similarly, as can be seen on the right panel of the figure for the
second data, the values of the linear predictor nearly perfectly separate the values
of the outcome, which is a sign of quasi-complete separation. In this case, the
predicted values of the outcome take the value of zero, a value between zero and
one (only for three observations) and the value of one, when the linear predictor is
smaller than zero, equal to zero, and larger than zero, respectively. Next, it will be

Figure 1. Illustrations of the (quasi) complete separation problem

elaborated how to remedy the adverse impacts of separation in estimating model
parameters and their standard errors using three different estimation methods.

4. Estimation Methods

The separation [1] often occurs with small and medium sample sizes when es-
timating model parameters and their standard errors in logistic regression. The
Newton-Raphson algorithm used to obtain MLEs does not converge for (some
of) model parameters when the data suffer from separation. This nonconvergence
causes spuriously high parameter estimates and standard errors [33, pp. 282-283]
and results in unreliable test statistics and hypothesis testing. In response to this
challenge, researchers have been paying attention to more appropriate estimation
techniques than MLE to overcome separation in logistic regression. In the sequel,
three of such advanced estimation methods will be elaborated, respectively.
Firth’s method : Firth [7] proposed a method to improve the parameter estimates

in logistic regression by reducing the bias occurs with small samples when using the
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method of maximum likelihood for estimation. Since Firth’s method incorporates
a penalizing factor into the log likelihood in (4), it is also known as the method of
penalized maximum likelihood estimation. Firth’s penalized log likelihood function
is defined as:

L∗(β | y1, y2, ..., yN ) = L(β | y1, y2, ..., yN ) +
1

2
log |I(β)|, (5)

where I(β) = xTi Wxi is the information matrix and W = diag[πi(1− πi)] [35,
p. 164]. Heinze and Schemper [14] have adopted the penalized log likelihood func-
tion above to overcome separation in the analysis of two cancer studies. Firth’s
method is flexible in the sense that it can be incorporated into nonparametric re-
sampling techniques when estimating model parameters and their standard errors.
Firth’s method with nonparametric bootstrapping : Nonparametric bootstrapping

[6] is a resampling (with replacement) technique that can be used as an alternative
to the method of maximum likelihood to obtain MLEs and their standard errors,
when model assumptions are not satisfied (see [34], [15, p. 44]). Nonparametric
bootstrapping uses the information given in the original sample to generate, for
example, B = 1000 bootstrap samples, in each of which model parameters are
estimated using the method of maximum likelihood. Subsequently, it calculates the
averages and standard deviations of the bootstrap estimates across these samples
to obtain the overall parameter estimates and their standard errors.
The usual nonparametric bootstrapping using the method of maximum likeli-

hood for estimation in each bootstrap sample assumes that the original sample
adequately represents the population of interest, which is often not a reasonable
assumption for small samples. Thus, since separation usually occurs with small
and medium samples, it is not recommended to use nonparametric bootstrapping
in conjunction with MLEs under separation. Nonparametric bootstrapping can
still be used for a small or medium sample in the context of logistic regression
when the data suffer from separation. This can be done by replacing MLEs with
PMLEs obtained using Firth’s method in each bootstrap sample. The method of
maximum likelihood and nonparametric bootstrapping with MLEs produce bias
estimates with small samples [15], and thus, they should not be used to overcome
separation in logistic regression. Bayesian methods are good alternatives to Firth’s
method and nonparametric bootstrapping with PMLEs to deal with separation in
logistic regression.
Bayesian approach using MCMC algorithms: Bayesian estimation using Markov

chain Monte Carlo (MCMC) algorithms benefits from prior knowledge on the dis-
tribution of model parameters and information in the data at hand to generate
posterior samples, which are, in turn, utilized to obtain parameter estimates and
their standard errors. The Metropolis Hastings [13, 23], Gibbs sampling [10], and
Hamiltonian Monte Carlo (HMC; [2, 5, 26]) are three of the best known MCMC
algorithms that can be used to obtain the estimates of model parameters and their
standard errors for small samples in logistic regression. The HMC (also known
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as Hybrid Monte Carlo) and Gibbs sampling algorithms are used for Bayesian es-
timation in this paper using the R packages “rstanarm” [12], “runjags” [4], and
“bayesreg”[19].
Rainey [29] suggests to utilize two priors when estimating model parameters us-

ing Bayesian approaches under separation in logistic regression, which are Jeffrey’s
invariant prior [16], [35] and a weakly informative Cauchy(0, 2.5) prior [9]. Bayesian
approach using Jeffrey’s prior is the same with Firth’s penalized maximum likeli-
hood estimation method, since the penalty part of the log likelihood function in
(5), 1

2 log |I(β)|, is equal to the log of Jeffrey’s prior in logistic regression [29].
Moreover, using weakly informative Cauchy(0, 2.5) prior to cope with separation in
logistic regression is highly controversial. Ghosh, Li and Mitra [11] state that using
a Cauchy(0, 2.5) prior imposes too much insuffi cient information into the analysis
to overcome separation in logistic regression. They show that using Cauchy(0, 2.5)
prior may cause spuriously high posterior means for parameters in the presence of
separation in logistic regression and may not even enable researchers to obtain these
means. Their results suggest to use weakly informative priors with lighter tails than
that of Cauchy(0, 2.5) prior such as Normal and Student-t (df = 7) priors. Thus,
in addition to Cauchy(0, 2.5) prior, a weakly informative Normal(0, 2.5) prior (the
default prior for regression coeffi cients in rstanarm) and Student-t(0, 2.5, df = 7)
prior will be utilized to obtain parameter estimates and their standard errors.
Mansournia, Geroldinger, Greenland, and Heinze [20] utilize Firth’s method [7],

Ridge logistic regression [31], lasso logistic regression [17], [30], and Bayesian esti-
mation using weakly informative priors. The difference between the current study
and the study in Mansournia et al. [20] is threefold. First, Mansournia et al. [20]
utilize Bayesian estimation using only Cauchy(0, 2.5) and Log-F(1, 1) priors. As
will be shown later in this paper, Bayesian estimation using these priors does not
necessarily perform well in logistic regression under separation problem. Thus, the
current study also uses Bayesian estimation via Normal(0, 2.5), Student-t(0, 2.5,
df = 7), and Log-F(2, 2) priors. Second, Mansournia et al. [20] do not perform a
simulation study to inspect the performance of methods used in their study, while
the current study compares the performance of both frequentist and Bayesian es-
timation methods with respect to bias, precision, and accuracy measures. Third,
Mansournia et al. [20] investigate the frequentist Ridge and Lasso logistic regres-
sions to cope with separation. Researchers often need to determine the value of a
penalizing parameter (λ ≥ 0; also called the tuning or shrinkage parameter utilized
on all the regression coeffi cients besides the intercept in the model) using, for ex-
ample, cross-validation in order to employ these techniques to solve the problem.
However, obtaining the tuning parameter λ is often a complicated and cumbersome
task in logistic regression under separation. In many cases where the data suffer
from the separation problem the tuning parameter can be estimated as very close
to zero, which means that the penalized estimates are very close to the usual MLEs.



1090 Y. ALTINISIK

To remedy this, the current study does not inspect the usual Ridge and Lasso lo-
gistic regressions to solve the separation problem in logistic regression, but instead
it utilizes their Bayesian counterparts, that is, Bayesian Ridge and Bayesian Lasso
logistic regressions. Note that the tuning parameter λ is set to 1 in Bayesian Ridge
logistic regression and λ2 ∼ Exp(1) in Bayesian Lasso logistic regression for each
regression coeffi cients in the model (see [19, p. 7]).

5. Simulation study

5.1. Simulation Steps. In this section, the performance of the methods on esti-
mating model parameters will be compared to each other for the data sets containing
separation in the context of logistic regression. The model used in the simulation
is:

f(πi) = β0 + β1Ii + β2xi1 + β3xi2, (6)

where f(πi) is the logit link function in (2), β0 is the intercept, β1 is the coeffi cient
of a dummy variable Ii and β2 and β3 are the coeffi cients of two continuous variables
xi1 and xi2, respectively, for i = 1, 2, ..., N . The simulation comprises the following
steps:

(1) Set the entries in the vector of model parameters, β = (β0, β1, β2, β3)
T ,

equal to 1.
(2) Choose the sample size in the simulation as N = 20, 50, and 100.
(3) Generate the values of dummy variable Ii of size N, such that the probability

of observing a success is 0.25.
(4) Generate the values of continuous variables xi1 and xi2 of size N from the

standard normal distribution, such that their values are independent from
each other and the values of dummy variable.

(5) By multiplying the values of the design matrix xTi = (1, Ii, xi1, xi2) ∈ IRN×P

and parameter vector β = (β0, β1, β2, β3)
T ∈ IRP×1, calculate the linear

predictor part of the model, xTi β, where N = 20, 50, or 100 and P = 4.

(6) Calculate the probability of success for each observation, πi =
exp(xTi β)

1+exp(xTi β)

for i = 1, 2, ..., N .
(7) Generate the values of the response using the success probabilities, that is,

yi ∼ Bernoulli(πi) for i = 1, 2, ..., N .
(8) Check the model fit to detect separation in the data using the R package

“brglm2”.
(a) If there is no separation problem in the data, return to Step 3.
(b) If there is a separation problem in the data, obtain the estimates of

model parameters using each estimation method elaborated in the pre-
vious section.

(9) Repeat Steps 3-8 until having a set of parameter estimates for S = 1000
samples, each of which containing separation problem.
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(10) Calculate the values of the bias, precision, and accuracy measures for each
method using the estimates obtained for these samples.

Note that the measures of bias, precision, and accuracy need to be calculated
for each method, which are the method of maximum likelihood, Firth’s method
(with and without nonparametric bootstrapping), and Bayesian approach using
Normal(0, 2.5), Cauchy(0, 2.5), Student-t(0, 2.5, df = 7), Log-F(1, 1), Log-F(2, 2),
Ridge and Lasso priors.

5.2. Bias, precision, and accuracy measures for evaluating performance.
The performance of the methods will be compared to each other using the measures
of bias, precision, and accuracy given in Walther and Moore [32]. These measures
are defined as:

Biasp =
1

S

S∑
s=1

(β̂sp − βp),

Precisionp =
1

S

S∑
s=1

(β̂sp − β̄p)2, (7)

Accuracyp =
1

S

S∑
s=1

(β̂sp − βp)2,

where β̄p = 1
S

∑S
s=1 β̂sp and βj = 1 for s = 1, 2, ..., 1000 and p = 0, 1, 2, 3. The

Biasp is the mean of the differences between parameter βp and its estimate across
S = 1000 samples. Similarly, Precisionp is the mean of the squared differences
between an estimate and its expected value (i.e., β̄p) in S = 1000 samples, which
is calculated for each parameter, separately. The measure of accuracy for the pth
parameter, Accuracyp, is the mean of the squared differences between parameter
βp and its estimates across S = 1000 samples, which is a combination of Biasp and
Precisionp. Note that the term “bias”is directly related and the terms “precision”
and “accuracy”are inversely related to their corresponding equations in ( 7). That
is, a small value of Biasp means a low bias, while small values of Precisionp and
Accuracyp imply high precision and accuracy when estimating model parameters.
Another accuracy measure that can be used to investigate the performance of

methods on estimating model parameters is the mean squared error (MSE), rep-
resenting the estimation error for each sample in the simulation. The MSE is the
total mean squared error between all parameters and their estimates:

MSE =
1

P

P−1∑
p=0

(βp − β̂p)2, (8)

where P = 4 is the number of parameters in the model. The mean of MSE values
across S = 1000 simulation samples can be used to compare the overall performance
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of methods on estimating model parameters. A small value of MSE means a high
overall accuracy when estimating model parameters.

5.3. Simulation Results. Table 1 displays Biasp, Precisionp and Accuracyp val-
ues obtained from 1000 simulated data sets, each of which contains the separation
problem. This table shows that the estimate of parameter β1 often has a higher
bias and a lower precision and accuracy than that of parameters β2 and β3, since
dummy variables are more prone to suffer from separation than continuous vari-
ables. Because of the same reason, although increasing the sample size increases the
precision when estimating each parameter, this reduces the bias and improves the
accuracy only for parameters β0, β2, and β3, but not for parameter β1. It seems
that Firth’s penalized maximum likelihood estimation and Bayesian estimation us-
ing Log-F(2, 2) prior provide smaller biases and higher precision and accuracy mea-
sures when compared to other estimation methods. Similarly, these methods have
smaller MSE values (higher overall accuracy measures) when compared to other
methods (see Table 2). Moreover, both tables show that Bayesian estimation may
not perform well with Ridge prior, since the corresponding estimates may have spu-
riously high precision and accuracy values (indicating low precision and accuracy
for these estimates). However, the values in these tables are point estimates, and
thus, a set of graphical visualizations are designed to facilitate the interpretation
of the simulation results.

Table 1. Bias, precision, and accuracy measures for performance evaluation.

PM LE PM LE v ia N B
M CM C

N o rm a l ( 0 , 2 .5 )

M e a s u r e N β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

B ia s p 2 0 0 .1 2 0 .2 8 0 .0 9 0 .0 7 0 .3 0 0 .0 9 0 .3 2 0 .2 9 0 .8 9 0 .7 4 0 .5 3 0 .5 0
5 0 0 .0 1 1 .5 7 0 .0 2 0 .0 4 0 .1 9 1 .6 1 0 .2 4 0 .2 6 0 .2 8 1 .9 3 0 .1 9 0 .1 9
1 0 0 0 .0 1 2 .2 1 - 0 .0 2 0 .0 1 0 .0 7 2 .2 3 0 .0 6 0 .0 9 0 .1 4 2 .4 7 0 .0 6 0 .0 9

P r e c i s i o n p 2 0 0 .8 1 2 .4 9 0 .9 9 1 .1 3 0 .9 0 2 .8 9 1 .1 6 1 .1 9 1 .7 7 1 .2 6 1 .3 7 1 .3 5
5 0 0 .3 1 0 .9 8 0 .3 9 0 .5 4 0 .4 4 1 .1 0 0 .5 5 0 .6 4 0 .3 8 0 .3 2 0 .3 4 0 .3 2
1 0 0 0 .1 0 0 .3 2 0 .1 2 0 .1 1 0 .1 2 0 .3 6 0 .1 5 0 .1 4 0 .1 2 0 .1 6 0 .1 4 0 .1 2

A c c u r a c y p 2 0 0 .8 2 2 .5 7 1 .0 0 1 .1 3 0 .9 9 2 .9 0 1 .2 6 1 .2 7 2 .5 7 1 .8 1 1 .6 5 1 .6 0
5 0 0 .3 1 3 .4 6 0 .3 9 0 .5 4 0 .4 8 3 .7 0 0 .6 1 0 .7 1 0 .4 6 4 .0 3 0 .3 8 0 .3 6
1 0 0 0 .1 0 5 .2 2 0 .1 3 0 .1 1 0 .1 3 5 .3 5 0 .1 6 0 .1 5 0 .1 4 6 .2 4 0 .1 4 0 .1 3

M CM C
C a u ch y ( 0 , 2 .5 )

M CM C
S tu d e n t - t ( 0 , 2 .5 , d f = 7 )

M CM C
L o g -F ( 1 , 1 )

M e a s u r e N β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3
B ia s p 2 0 1 .2 3 2 .0 2 0 .9 7 0 .9 3 0 .9 5 0 .9 1 0 .6 1 0 .5 7 0 .6 3 1 .2 3 0 .5 1 0 .4 7

5 0 0 .2 5 3 .8 9 0 .2 1 0 .2 2 0 .2 7 2 .2 0 0 .2 0 0 .2 0 0 .2 2 2 .5 6 0 .1 8 0 .1 8
1 0 0 0 .1 2 4 .8 5 0 .0 6 0 .0 9 0 .1 4 2 .8 0 0 .0 7 0 .0 9 0 .1 2 3 .2 3 0 .0 6 0 .0 9

P r e c i s i o n p 2 0 4 .0 9 6 .0 8 4 .3 8 4 .9 0 2 .0 7 1 .5 9 1 .6 7 1 .6 6 1 .1 3 1 .8 5 1 .3 5 1 .3 5
5 0 0 .4 9 1 .8 8 0 .4 7 0 .5 5 0 .4 0 0 .4 7 0 .3 6 0 .3 5 0 .3 2 0 .6 0 0 .3 4 0 .3 2
1 0 0 0 .1 2 0 .8 8 0 .1 4 0 .1 3 0 .1 2 0 .2 4 0 .1 4 0 .1 2 0 .1 2 0 .3 8 0 .1 4 0 .1 2

A c c u r a c y p 2 0 5 .6 0 1 0 .1 5 5 .3 3 5 .7 6 2 .9 8 2 .4 1 2 .0 4 1 .9 8 1 .5 3 3 .3 5 1 .6 2 1 .5 7
5 0 0 .5 6 1 6 .9 9 0 .5 1 0 .6 0 0 .4 8 5 .3 0 0 .4 0 0 .3 9 0 .3 7 7 .1 5 0 .3 7 0 .3 6
1 0 0 0 .1 4 2 4 .3 9 0 .1 5 0 .1 4 0 .1 4 8 .0 8 0 .1 5 0 .1 3 0 .1 3 1 0 .8 1 0 .1 4 0 .1 3

M CM C
L o g -F ( 2 , 2 )

B ay e s ia n
R id g e L R

B ay e s ia n
L a s s o L R

M e a s u r e N β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3
Biasp 2 0 0 .2 9 0 .3 6 0 .1 0 0 .0 8 4 .3 2 2 .1 0 3 .4 7 3 .8 6 0 .4 5 - 0 .3 8 - 0 .4 5 - 0 .4 3

5 0 0 .1 5 1 .4 0 0 .0 5 0 .0 4 0 .2 8 1 .8 5 - 0 .0 1 0 .0 5 0 .1 8 0 .9 6 - 0 .2 8 - 0 .2 7
1 0 0 0 .1 0 2 .0 5 0 .0 1 0 .0 3 0 .1 0 2 .8 3 - 0 .0 3 - 0 .0 1 0 .0 7 2 .4 5 - 0 .1 3 - 0 .1 0

Precisionp 2 0 0 .5 1 0 .6 1 0 .5 7 0 .5 9 6 0 7 .5 1 3 5 .9 3 8 2 .9 6 0 2 .4 1 .0 0 1 .0 9 1 .0 3 1 .3 3
5 0 0 .2 3 0 .3 2 0 .2 2 0 .2 1 8 .3 2 3 .6 5 5 .2 9 1 3 .3 8 1 .0 7 4 .3 4 1 .5 4 2 .0 4
1 0 0 0 .1 0 0 .2 1 0 .1 1 0 .1 0 0 .1 1 0 .8 0 0 .1 4 0 .1 2 0 .1 0 0 .8 9 0 .1 4 0 .1 3

Accuracyp 2 0 0 .5 9 0 .7 3 0 .5 9 0 .6 0 6 2 6 .2 1 3 6 .3 3 9 4 .9 6 1 7 .3 1 .2 0 1 .2 4 1 .2 3 1 .5 2
5 0 0 .2 5 2 .2 7 0 .2 3 0 .2 1 8 .4 0 7 .0 7 5 .2 9 1 3 .3 8 1 .1 0 5 .2 5 1 .6 2 2 .1 1
1 0 0 0 .1 1 4 .4 1 0 .1 1 0 .1 0 0 .1 2 8 .7 8 0 .1 4 0 .1 2 0 .1 1 6 .8 9 0 .1 6 0 .1 4
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Table 2. The overall accuracy measure (MSE) for performance evaluation.

PMLE PMLE via NB
MCMC

Normal(0, 2.5)
N β = (β0, β1, β2, β3)

T β = (β0, β1, β2, β3)
T β = (β0, β1, β2, β3)

T

20 1.38 1.61 1.91
50 1.18 1.37 1.31
100 1.39 1.44 1.66

MCMC
Cauchy(0, 2.5)

MCMC
Student-t(0, 2.5, df = 7)

MCMC
Log-F(1, 1)

N β = (β0, β1, β2, β3)
T β = (β0, β1, β2, β3)

T β = (β0, β1, β2, β3)
T

20 6.71 2.36 2.02
50 4.66 1.64 2.06
100 6.20 2.13 2.80

MCMC
Log-F(2, 2)

Bayesian
Ridge LR

Bayesian
Lasso LR

N β = (β0, β1, β2, β3)
T β = (β0, β1, β2, β3)

T β = (β0, β1, β2, β3)
T

20 0.63 750.4 1.30
50 0.74 8.53 2.52
100 1.18 2.29 1.82

Figure 2. Boxplots used to interpret bias measures

Figures 2 and 3 display the differences between the values of estimates and
parameters and the squared differences between the values of estimates and their
expected values across the simulated data sets using varying sample sizes, which
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Figure 3. Boxplots used to interpret precision measures

Figure 4. Boxplots used to interpret accuracy measures

are used to obtain the values of Biasp and Precisionp for each estimation method,
respectively. 1 It seems that most of the methods perform well in terms of Biasp
and Precisionp measures. However, Biasp and Precisionp measures of Bayesian

1The Precisionp, Accuracyp and MSE values are always positive and they spread over large

scales. Thus, the y = x
1
4 transformation is utilized on these values to better visualize and compare

the performance of the methods (see [18, p. 12]).
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Figure 5. Boxplots used to interpret MSE values

estimation using Cauchy(0, 2.5) and Lasso priors have higher standard errors when
compared to that of other methods under investigation. It seems that Bayesian
estimation using log-F(2, 2) prior involves smaller amount of bias and have higher
precision in estimating model parameters when compared to other methods. Note
that the figures in the paper do not show the results for Bayesian estimation using
Ridge prior, since this method produces spuriously high parameter estimates and
their standard errors.
Figures 4 and 5 show the squared differences and the sums of squared differences

between the values of estimates and parameters using varying sample sizes, which
are utilized to obtain Accuracyp and MSE values, respectively. Increasing the sam-
ple size improves the accuracy for each parameter, and thus, the total accuracy
when estimating model parameters using each method. The estimates obtained by
using Bayesian estimation with Log-F(2, 2) prior often have higher (total) accu-
racy measures, and thus, lower Accuracyp and MSE values, when compared to other
methods. Since nonparametric bootstrapping assumes an original sample that ad-
equately represents the population of interest, the performance of Firth’s method
and Firth’s method with nonparametric bootstrapping better resemble each other
for large sample sizes (e.g., when N = 100). It seems that Bayesian approach with
weakly informative Normal(0, 2.5) prior performs better than that with Student-
t(0, 2.5, df = 7) or Log-F(1, 1) prior which in turn performs better than that with
Cauchy(0, 2.5) prior. This result is in line with the suggestions made in Ghosh et
al. [11], which state that Cauchy(0, 2.5) prior provides too much deficient informa-
tion, and thus, instead of using this prior, Normal(0, 2.5) and Student-t(0, 2.5, df
= 7) priors should be used when dealing with separation in logistic regression.
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6. An example: Endometrial cancer data

A study in Heinze and Schemper [14] is used to illustrate how to analyze the
data at hand under separation in logistic regression. In the study, the dichotomous
outcome histology (HG: 0 = grade 0-II, 1 = grade III-IV) represents the histology of
the endometrium by commonly accepted risk factors for endometrial cancer patients
(N = 79). This outcome is predicted by the categorical variable neovasculization
(NV: 0 = absent, 1 = present) and two continuous variables pulsatility index of
arteria uterina (PI) and endometrium high (EH). The logistic regression model
used to analyze the endometrial cancer data is:

f(πi) = β0 + β1NVi + β2PIi + β3EHi, (9)

where f(.) is the logit link function, β0 is the intercept and β1, β2, and β3 are the
regression coeffi cients of variables NV, PI and EH, respectively, for i = 1, 2, ..., 79.
Since there is no observation in the endometrial cancer data for NV = 1 and

HG = 0, the data suffer from quasi-complete separation, which has a detrimental
effect on the estimate of parameter β1 and its standard error when the estimation
process is performed using the usual method of maximum likelihood. Therefore,
Firth’s method, Firth’s method with nonparametric bootstrapping, Bayesian ap-
proach using Normal(0, 2.5), Cauchy(0, 2.5), Student-t(0, 2.5, df= 7), Log-F(1, 1),
Log-F(2, 2), Ridge and Lasso priors are used to obtain parameter estimates and
their standard errors (see Table 3).2

The estimates of parameters β2 and β3 across the methods are reasonably close
to each other, while the estimates of parameters β0 and β1 across the methods
may differ from each other. Figure 6 shows that the predicted probabilities of the
outcome histology for some of the observations in the data are exactly equal to 1 (in
the upper right corner of the plot), when using the method of maximum likelihood
for estimation, which is a sign of the quasi-complete separation problem. Bayesian
approach using the MCMC algorithm with Cauchy(0, 2.5) prior does not provide
a convincing solution to the separation for endometrial cancer data, since some of
the predicted probabilities of the outcome are (almost) equal to 1. The plots for
other methods more closely resemble the regular logistic regression plot in which
predicted probabilities are between the numbers 0 and 1.
Here, several diagnostics are introduced to inspect whether the MCMC algorithm

produces adequate posterior samples for parameters when using weakly informative
Normal(0, 2.5), Cauchy(0, 2.5), and Student-t(0, 2.5, df = 7) priors. The poten-
tial scale reducing factor (R̂) and effective sample size (ESS) statistics for each
parameter are used to determine whether the MCMC algorithm converges properly
with high estimation accuracy. These statistics are obtained by inspecting multiple
chains and dissimilarities between them (default number of chains is often 4). The
R̂ statistic shows whether the chains converge to the same area by exploring the

2For more details on obtaining the estimates of model parameters and their standard errors
using R code for each estimation method see Supplementary material.
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Table 3. Estimates and standard errors of the coeffi cients for the
logistic regression.

PMLE PMLE via NB
MCMC

Normal(0, 2.5)
β β̂ SE(β̂) β̂ SE(β̂) β̂ SE(β̂)
β0 3.77 1.49 4.69 2.45 4.52 1.55
β1 2.93 1.55 3.25 1.10 3.33 1.39
β2 -0.03 0.04 -0.05 0.07 -0.04 0.04
β3 -2.60 0.78 -3.11 1.29 -3.09 0.82

MCMC
Cauchy(0, 2.5)

MCMC
Student-t(0, 2.5, df =7)

MCMC
Log-F(1, 1)

β β̂ SE(β̂) β̂ SE(β̂) β̂ SE(β̂)
β0 4.40 1.57 4.47 1.59 3.23 1.20
β1 5.53 4.07 3.53 1.73 3.95 1.63
β2 -0.04 0.04 -0.04 0.04 -0.02 0.04
β3 -3.01 0.82 -3.08 0.85 -2.45 0.66

MCMC
Log-F(2, 2)

Bayesian
Ridge LR

Bayesian
Lasso LR

β β̂ SE(β̂) β̂ SE(β̂) β̂ SE(β̂)
β0 2.40 1.04 3.86 1.59 3.53 1.49
β1 3.10 1.31 4.64 4.59 3.60 3.15
β2 -0.01 0.03 -0.03 0.04 -0.02 0.03
β3 -2.06 0.59 -2.71 0.84 -2.58 0.82

ratio of their within and between variances. A value of R̂ < 1.1 indicates good
convergence of the chains for the corresponding parameter. A high value of the
ESS statistic indicates low autocorrelation and high estimation accuracy within
the chains, where ESS > 1000 is often considered to be an adequate sample size
statistic for many social scientists [25]. Table 4 displays the values of R̂ and ESS
statistics obtained for each parameter, where the MCMC algorithm is used with
Normal(0, 2.5), Cauchy(0, 2.5), and Student-t(0, 2.5, df = 7) priors, respectively.
The use of MCMC algorithm with Normal(0, 2.5) and Student-t(0, 2.5, df = 2.5)
priors results in good convergence of the chains (i.e., R̂ = 1 for each parameter) with
low autocorrelation, and consequently, high estimation accuracy (i.e., ESS > 1000
for each parameter). Although the MCMC algorithm with Cauchy(0, 2.5) prior
produces good convergence of the chains for each parameter, there is a high au-
tocorrelation and a low estimation accuracy within parameter samples, especially
when looking at the relationship between the outcome and dichotomous predic-
tor NV (i.e., ESS = 103 for parameter β1). Thus, the focus from now on will be
particularly on parameter β1 to visually inspect the difference between the MCMC
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Figure 6. The values of linear predictor against predicted probabilities

algorithm with weakly informative Normal(0, 2.5), Cauchy(0, 2.5), and Student-t(0,
2.5, df = 7) priors.

Table 4. The R̂ and ESS statistics for each parameter under Nor-
mal(0, 2.5), Cauchy(0, 2.5), and Student-t(0, 2.5, df = 7) priors.

HMC
Normal(0, 2.5)

HMC
Cauchy(0, 2.5)

HMC
Student-t(0, 2.5, df = 7)

R̂ ESS R̂ ESS R̂ ESS

β0 1.0 2620 1.0 1800 1.0 2303
β1 1.0 2064 1.0 848 1.0 1752
β2 1.0 3342 1.0 1988 1.0 3355
β3 1.0 2280 1.0 1874 1.0 1933

Figure 7 shows the histograms of marginal posterior distribution, trace plot
(chains separate), autocorrelation plot (combined chains) and log posterior for pa-
rameter β1 under the three priors, respectively. A marginal posterior distribution
is obtained for one single parameter by not taking other parameters in the model
into account. The histograms show that the marginal posterior distribution of pa-
rameter β1 is normal when using the normal prior and is close to be normal when
using the Student-t prior with df = 7 degrees of freedom, for which the mean (solid
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Figure 7. Marginal posterior distributions, trace and autocor-
relation plots and log posteriors for parameter β1 under weakly
informative Normal(0, 2.5), Cauchy(0, 2.5), and Student-t(0, 2.5,
df = 7) priors

line) and the median (dashed line) are (almost) equal to each other. The mar-
ginal posterior of parameter β1 using the Cauchy prior has a right skewed (i.e., the
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mean to the right of the median) distribution. By default, the MCMC algorithm in
rstanarm utilizes 2000 posterior samples of parameter β1 for each chain (i.e., 8000
samples in total), half of which are used in a warm-up phase and discarded later on
before showing diagnostics and making inference. Thus, each of the four trace plots
above under the three priors is created by using 1000 posterior samples of parame-
ter β1. Based on these plots, the chains display adequate mixing under Normal(0,
2.5) and Student-t(0, 2.5, df = 7) priors, but they may exhibit consecutive peri-
ods in positive direction under Cauchy(0, 2.5) prior. Based on the autocorrelation
plots, independently from the prior distribution of parameter β1, the correlation
between variable NV and its value at lag zero is one, since the latter represents
the variable itself. The height of spike at lag zero is quickly reduced to zero (and
fluctuated around zero afterwards) with increasing values of lags under Normal(0,
2.5) and Student-t(0, 2.5, df = 7) priors for parameter β1, respectively, which is a
sign against autocorrelation. However, when using Cauchy(0, 2.5) prior for para-
meter β1, the decrease in the height of spike at lag zero is relatively slow (and does
not fluctuate considerably around zero) compared to that using Normal(0, 2.5) and
Student-t(0, 2.5, df = 7) priors, which is a sign of positive autocorrelation.
The marginal posterior distribution for β1 is highly curved when using the

MCMC algorithm with Cauchy(0, 2.5) prior. This causes many divergent tran-
sitions in the MCMC algorithm, which are shown by the red points in the log
posterior scatter plot above. This is evidence of too large step size in the MCMC
algorithm under Cauchy(0, 2.5) prior. In this case, the results of MCMC algorithm
should not be trusted. The MCMC algorithm needs a smaller step size to avoid
divergent transitions and to draw plausible samples from the marginal posterior
distribution of β1, which can easily be adjusted by increasing the default value of
δ parameter in rstanarm (e.g., from 0.95 to 0.99). Table 5 shows the estimates of
parameters and their standard errors and the values of R̂ and ESS statistics, when
using Cauchy(0, 2.5) prior with divergent (δ = 0.95) and non-divergent (δ = 0.99)
transitions, respectively. Based on this table, decreasing the step size in the MCMC
algorithm by increasing the value of δ from 0.95 to 0.99 does not have much in-
fluence on parameter estimates and their standard errors. Moreover, increasing
the value of δ results in a non-convergence (i.e., R̂ = 1.1 for parameter β1) and a
decrease in estimation accuracy (i.e., ESS is only 35 for parameter β1). Therefore,
it is not recommended to use this prior to overcome separation in the endometrial
cancer data.

7. Discussion

Researchers in social sciences commonly use simple data manipulation techniques
to overcome separation in logistic regression. These solutions are often unsatisfac-
tory and do not meet the expectations of researchers. Thus, many researchers
have been paying attention to more convenient approaches for estimation, such as
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Table 5. Estimates and standard errors and the R̂ and ESS sta-
tistics under Cauchy(0, 2.5) prior with divergent and non-divergent
transitions.

Divergent transitions
δ = 0.95

Non-divergent transitions
δ = 0.99

β β̂ SE(β̂) R̂ ESS β̂ SE(β̂) R̂ ESS

β0 4.53 1.66 1.0 929 4.40 1.75 1.0 258
β1 5.99 4.54 1.0 103 6.05 4.61 1.1 35
β2 −0.04 0.04 1.0 1088 −0.04 0.04 1.0 1400
β3 −3.08 0.89 1.0 988 −3.01 0.90 1.0 234

symptotic and bootstrap-based bias reduction methods and Bayesian methods us-
ing weakly informative priors. However, the performance of these methods have not
been fully investigated yet with respect to bias, precision, and accuracy measures
in the context of logistic regression.
In the simulation, three methods were used to obtain the estimates of model

parameters and their standard errors: Firth’s penalized maximum likelihood esti-
mation, Firth’s method with nonparametric bootstrapping, and Bayesian approach
with seven different priors. In a concrete real life example, parameter estimation
was performed using these three methods for the endometrial cancer data. Supple-
mentary material contains the relevant R code for obtaining the estimates of model
parameters and their standard errors for each estimation method presented in this
paper. Results of the simulation study and the analysis of the endometrial cancer
data have showed that although most of the methods perform well in coping with
the consequences of separation problem in logistic regression, Bayesian estimation
with Log-F(2, 2) prior performs better than other methods.
The choice of prior distribution in Bayesian approach plays an essential role to

overcome separation in logistic regression. It was shown both by the simulation and
real life example that Bayesian approach with Cauchy(0, 2.5) or Ridge prior does
not provide a reliable solution to separation in logistic regression, since these priors
incorporate too much detrimental information into the analysis. A more coherent
weakly informative prior such as Normal(0, 2.5), Student-t(0, 2.5, df = 7), Log-F(1,
1), Log-F(2, 2), or Lasso prior should be utilized in place of Cauchy(0, 2.5) prior
when dealing with separation in the data.
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