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Abstract: The planes which is spanned by {𝑇(𝑠), 𝐵(𝑠)}, {𝑁(𝑠), 𝐵(𝑠)} and  
{𝑇(𝑠), 𝑁(𝑠)}  are known as the rectifying, normal and osculating plane, respectively. 
The curve  𝛼  is called rectifying, normal and osculating curve for which the position 
vector  𝛼  always lie in its rectifying, normal and osculating plane, respectively. It is 
also known that if all rectifying planes of a non-planar curve in  𝐸3  pass through a 
particular point, then the ratio of its torsion and curvature is a non-constant linear 
function. Rectifying, normal and osculating curves are studied many times in 
different spaces by many researchers. The aim of this paper is to characterize these 
curves from another point of view in Minkowski 3-space. 

  
  

𝐄𝟏
𝟑 Uzayında Bazı Özel Eğrilerin Karakterizasyonu 

 
 

Anahtar Kelimeler 
Rektifiyan eğri,  
Normal eğri,  
Oskülatör eğri  

Öz: {𝑇(𝑠), 𝐵(𝑠)}, {𝑁(𝑠), 𝐵(𝑠)} ve {𝑇(𝑠), 𝑁(𝑠)}  vektörleri tarafından gerilen 
düzlemler sırasıyla rektifiyan düzlem, normal düzlem ve oskülatör düzlem adını 
alırlar. Bir 𝛼 eğrisi ise pozisyon vektörünün kendi rektifiyan düzleminde, normal 
düzleminde ya da oskülatör düzleminde yatmasıyla sırasıyla rektifiyan, normal ve 
oskülatör eğri olarak isimlendirilir. Ayrıca 3-boyutlu Öklid uzayında düzlemsel 
olmayan bütün rektifiyan eğriler için çok iyi bilinen bir karakterizasyon vardır. Bu 
karakterizasyon, eğrinin torsiyon ve eğriliğinin oranı sabit olmayan lineer fonksiyon 
olan eğriler rektifiyandır şeklindedir. Rektifiyan, normal ve oskülatör eğriler, pek 
çok araştırmacı tarafından farklı uzaylarda pek çok kez çalışılmıştır. Bu çalışmanın 
amacı 3-boyutlu Minkowski uzayında farklı bir bakış açısı ile bu eğrileri karakterize 
etmektir. 

  
*İlgili Yazar, email: beyhanyilmaz@ksu.edu.tr 
 
1. Introduction
 
 
In differential geometry, the theory of curves is one of the main study areas in Euclidean 3-space. In three-
dimensional Euclidean space, to explain the geometric structure of any regular spatial curve, an orthonormal basis  
𝑇(𝑠), 𝑁(𝑠)  and  𝐵(𝑠)  called the Frenet frame at each point of the curve is described.  
 
The planes which is spanned by  {𝑇(𝑠), 𝐵(𝑠)}, {𝑁(𝑠), 𝐵(𝑠)}  and  {𝑇(𝑠), 𝑁(𝑠)}  are known as the rectifying, normal 
and osculating plane, respectively. The curve  𝛼  is called rectifying, normal and osculating curve for which the 
position vector  𝛼  always lie in its rectifying, normal and osculating plane, respectively [3]. These curves are 
studied by many authors and many characterizations are obtained [1, 4, 5, 6, 7, 9]. 
 
In this paper, we study these special curves in  E1

3 . These curves have previously been worked on in different 
spaces, but the importance of this study is to obtain results using a different method. 
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2.  Material and Method 
 
Let  𝐸1

3  be Minkowski  3 − space with the following metric 
 

⟨, ⟩𝐿 = 𝑅3 × 𝑅3 → 𝑅 
(𝑢, 𝑣) → ⟨𝑢, 𝑣⟩𝐿 = 𝑢1𝑣1 + 𝑢2𝑣2 − 𝑢3𝑣3 

 
where  𝑢 = (𝑢1, 𝑢2, 𝑢3)  and  𝑣 = (𝑣1, 𝑣2, 𝑣3)  are the usual coordinate system in  𝐸1

3.  An arbitrary vector  𝑢 ∈ 𝐸1
3  

said spacelike if  ⟨𝑢, 𝑢⟩𝐿 > 0  or  𝑢 = 0,  timelike if  ⟨𝑢, 𝑢⟩𝐿 < 0  and null (lightlike) if  ⟨𝑢, 𝑢⟩𝐿 = 0  but  𝑢 ≠ 0.  This 
classification can be generalized for regular curve  𝛼  according as the casual character of their tangent vectors. In 

other words, the curve  𝛼  is called a spacelike (resp. timelike and lightlike) if its velocity vector  𝛼 ′(𝑡)  is spacelike 

(resp. timelike and lightlike) for every  𝑡 ∈ 𝐼 . The norm of a vector  𝑢  is given by  ‖𝑢‖𝐿 = √|⟨𝑢, 𝑢⟩𝐿|.  
 
Assume that  {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)}  is the moving positive directed frame along the unit speed curve  𝛼 . Here  𝑇(𝑠) =

𝛼 ′(𝑠)  is a tangent vector, 𝑁(𝑠) =
𝛼″(𝑠)

‖𝛼″(𝑠)‖
  is a principal normal vector and  𝐵(𝑠) = 𝑇(𝑠) × 𝑁(𝑠)  is a binormal vector 

field along the curve  𝛼.  
 
Frenet-Serret formulas can be given as follows, see [8]: 
 

(

𝑇 ′(𝑠)

𝑁 ′(𝑠)

𝐵′(𝑠)

) = (

0 𝜅(𝑠) 0

−𝜀1𝜀3𝜅(𝑠) 0 −𝜀2𝜀3𝜏(𝑠)

0 𝜏(𝑠) 0

) (

𝑇(𝑠)

𝑁(𝑠)

𝐵(𝑠)
), 

 
where  𝜅(𝑠)  and  𝜏(𝑠)  are curvature and torsion of  𝛼,  respectively. Moreover, the Frenet-Serret vectors satisfy 
 

⟨𝑇(𝑠), 𝑇(𝑠)⟩𝐿 = 𝜀1, ⟨𝑁(𝑠), 𝑁(𝑠)⟩𝐿 = 𝜀2, ⟨𝐵(𝑠), 𝐵(𝑠)⟩𝐿 = 𝜀3, 
 
     ⟨𝑇(𝑠), 𝑁(𝑠)⟩𝐿 = ⟨𝑇(𝑠), 𝐵(𝑠)⟩𝐿 = ⟨𝑁(𝑠), 𝐵(𝑠)⟩𝐿 = 0, 

and  
 

𝑇(𝑠) × 𝑁(𝑠) = 𝐵(𝑠), 
𝐵(𝑠) × 𝑁(𝑠) = 𝜀3𝑇(𝑠), 
𝑇(𝑠) × 𝐵(𝑠) = 𝜀1𝑁(𝑠). 

 

Definition 2.1. A curve is congruent to a rectifying curve if and only if the ratio  
𝜏

𝜅
  is a nonconstant linear function 

of arclenght of parameter [2]. Also, unit speed curve with nonzero curvatures lies on a sphere if and only if   

𝜏

𝜅
= (

𝜅′

𝜏𝜅2)
′

 [3]. 

 
3. Results 
 
In this section we give some new corollaries related to special curves in Minkowski 3-space. Assume that  𝛼(𝑠)  be 
a unit speed non-null curve with non-zero curvature in Minkowski 3-space. Since the rectifying plane of  𝛼(𝑠)  is 
the perpendicular plane to  𝑁(𝑠) , we have  
 

⟨𝛼(𝑠) − 𝑥0, 𝑁(𝑠)⟩ = 0. 
 

If we take the derivative of this expression, we obtain that 
 

⟨𝑇(𝑠), 𝑁(𝑠)⟩ + ⟨𝛼(𝑠) − 𝑥0, 𝑁 ′(𝑠)⟩ = 0. 

 
By substituting from the Frenet-Serret formula, we achieve the following equation 
 

 
                                                       −𝜀1𝜀3𝜅(𝑠)⟨𝛼(𝑠) − 𝑥0, 𝑇(𝑠)⟩ − 𝜀2𝜀3𝜏(𝑠)⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ = 0.                                      (3.1) 

                                        
 
So we can easily see that, 
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                                                                           ⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ =
−𝜀1𝜅(𝑠)

𝜀2𝜏(𝑠)
⟨𝛼(𝑠) − 𝑥0, 𝑇⟩.                                                       (3.2) 

 
If we take the derivative of equation (3.1), we obtain that 
 

−𝜀1𝜀3(⟨𝑇(𝑠), 𝜅(𝑠)𝑇(𝑠)⟩ + ⟨𝛼(𝑠) − 𝑥0, 𝜅′(𝑠)𝑇(𝑠) + 𝜅2(𝑠)𝑁(𝑠)⟩) 

−𝜀2𝜀3(⟨𝑇(𝑠), 𝜏(𝑠)𝐵(𝑠)⟩ + ⟨𝛼(𝑠) − 𝑥0, 𝜏 ′(𝑠)𝐵(𝑠) + 𝜏2(𝑠)𝑁(𝑠)⟩) = 0. 

 

If necessary arrangements are made, we can easily see that 

 
−𝜀1

2𝜀3𝜅(𝑠) − 𝜀1𝜀3𝜅 ′(𝑠)⟨𝛼(𝑠) − 𝑥0, 𝑇(𝑠)⟩ − 𝜀2𝜀3𝜏 ′(𝑠)⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ = 0. 
 
 
If equation (3.2) is written in the last equation, we get 
 

𝜀1
2𝜀3𝜅(𝑠) = 𝜀1𝜀3⟨𝛼(𝑠) − 𝑥0, 𝑇(𝑠)⟩ (−𝜅′(𝑠) + 𝜏 ′(𝑠)

𝜅(𝑠)

𝜏(𝑠)
). 

 
Then using the last two equations we reach the following equations; 
 

                                                                  ⟨𝛼(𝑠) − 𝑥0, 𝑇(𝑠)⟩ =
𝜀1𝜅(𝑠)

−𝜅′(𝑠)+𝜏′(𝑠)
𝜅(𝑠)

𝜏(𝑠)

                                                                                 (3.3) 

and 

                                                                ⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ =
−𝜀1

𝜀2

𝜅(𝑠)

𝜏(𝑠)

𝜀1𝜅(𝑠)

−𝜅′(𝑠)+𝜏′(𝑠)
𝜅(𝑠)

𝜏(𝑠)

.                                                                    (3.4) 

 
Then if we work with the denominator of equation (3.3), we have 
 

−𝜅′(𝑠) + 𝜏 ′(𝑠)
𝜅(𝑠)

𝜏(𝑠)
=

𝜏 ′(𝑠)𝜅(𝑠) − 𝜅′(𝑠)𝜏(𝑠)

𝜏(𝑠)
, 

=
(

𝜏(𝑠)

𝜅(𝑠)
)
′

𝜅2(𝑠)

𝜏(𝑠)
. 

 
If we using above result in equation (3.3), we can see that 
 
 

                                                                               ⟨𝛼(𝑠) − 𝑥0, 𝑇(𝑠)⟩ = 𝜀1

𝜏(𝑠)

𝜅(𝑠)

(
𝜏(𝑠)

𝜅(𝑠)
)
′ .                                                                            (3.5) 

 
So, we obtain that 

                                                                                ⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ =
−1

𝜀2

1

(
𝜏(𝑠)

𝜅(𝑠)
)
′ .                                                                          (3.6) 

 
From the equations (3.5) and (3.6), the equation of the curve  𝛼(𝑠)  is obtained as follows 
 

                                                                   𝛼(𝑠) − 𝑥0 =

𝜏(𝑠)

𝜅(𝑠)

(
𝜏(𝑠)

𝜅(𝑠)
)
′ 𝑇(𝑠) −

1

𝜀2𝜀3

1

(
𝜏(𝑠)

𝜅(𝑠)
)
′ 𝐵(𝑠).                                                                 (3.7) 

 

Using the equality  
𝜏(𝑠)

𝜅(𝑠)
= 𝐻(𝑠)  which is called the harmonic curvature function, we have 

 

𝛼(𝑠) − 𝑥0 =
𝐻(𝑠)

𝐻′(𝑠)
𝑇(𝑠) −

1

𝜀2𝜀3

1

𝐻′(𝑠)
𝐵(𝑠). 

 
If we take the derivative of this equation, we get 
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((
𝐻(𝑠)

𝐻′(𝑠)
)
′

− 1) 𝑇(𝑠) + (
𝐻(𝑠)

𝐻′(𝑠)
𝜅(𝑠) −

1

𝜀2𝜀3

1

𝐻′(𝑠)
𝜏(𝑠)) 𝑁(𝑠) + (−

1

𝜀2𝜀3
(

1

𝐻 ′(𝑠)
)
′

) 𝐵(𝑠) = 0. 

 
 
Since  𝑇(𝑠), 𝑁(𝑠)  and  𝐵(𝑠)  are linearly independent, we obtain that 
 

                                                                                             (
𝐻(𝑠)

𝐻′(𝑠)
)
′

− 1 = 0,                                                                                      (3.8) 

 

                                                                          
𝐻(𝑠)

𝐻′(𝑠)
𝜅(𝑠) −

1

𝜀2𝜀3

1

𝐻′(𝑠)
𝜏(𝑠) = 0,                                                                               (3.9) 

and 

                                                                                           −
1

𝜀2𝜀3
(

1

𝐻′(𝑠)
)
′

= 0.                                                                                 (3.10) 

 
Corollary 3.1. Let  𝛼  :   𝐼 ⊂ 𝑅 → 𝐸1

3  be a unit speed timelike curve with non-zero curvature in Minkowski 3-space. 

If every rectifying plane contains the point  𝑥0  in  𝑅3 , i.e, if  𝛼(𝑠)  is a rectifying curve, then  
𝜏

𝜅
  is a linear function. 

 
 Proof. From the equation (3.9), we obtain that  𝜀2𝜀3 = 1.  So we can easily say that the curve  𝛼(𝑠)  is a timelike in 

Minkowski 3-space. Easily using the equations (3.8) or (3.10), 𝐻″(𝑠) = 0  and 𝐻(𝑠) =
𝜏(𝑠)

𝜅(𝑠)
= 𝑐𝑠 + 𝑑  for some 

constants  𝑐, 𝑑  and arc length  𝑠.  
 
 
With similar thought, assume that 𝛼(𝑠) be a unit speed non-null curve with non-zero curvature in Minkowski 3-
space. Since the normal plane of  𝛼(𝑠) is orthogonal to  𝑇(𝑠), we have 
 

⟨𝛼(𝑠) − 𝑥0, 𝑇(𝑠)⟩ = 0. 
 
If we take the derivative of this expression, we get 
 

⟨𝑇(𝑠), 𝑇(𝑠)⟩ + ⟨𝛼(𝑠) − 𝑥0, 𝑇 ′(𝑠)⟩ = 0. 

 
Then by substituting from the Frenet-Serret formula, we have 
   
                                                                          𝜀1 + ⟨𝛼(𝑠) − 𝑥0, 𝜅(𝑠)𝑁(𝑠)⟩ = 0,                                                                        (3.11) 

 

                                                                                ⟨𝛼(𝑠) − 𝑥0, 𝑁(𝑠)⟩ =
−𝜀1

𝜅(𝑠)
.                                                                                (3.12) 

 
If we take the derivative of equation (3.11), we can see  
 

⟨𝛼(𝑠) − 𝑥0, 𝜅′(𝑠)𝑁(𝑠)⟩ − 𝜀1𝜀3𝜅2(𝑠)⟨𝛼(𝑠) − 𝑥0, 𝑇(𝑠)⟩ − 𝜀2𝜀3𝜅(𝑠)𝜏(𝑠)⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ = 0. 

 
So if we write equation (3.12) in the last equation, we obtain 
 

                                                                                 ⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ =
1

𝜀2𝜀3

(
𝜀1

𝜅(𝑠)
)
′

𝜏(𝑠)
 .                                                                    (3.13) 

 
Using the equations (3.12) and (3.13), we can see that 
 

                                                                     𝛼(𝑠) − 𝑥0 =
−𝜀1

𝜀2𝜅(𝑠)
𝑁(𝑠) +

1

𝜀2𝜀3
2

(
𝜀1

𝜅(𝑠)
)
′

𝜏(𝑠)
𝐵(𝑠).                                                            (3.14) 

  

If we say  
𝜀1

𝜅(𝑠)
= 𝑡(𝑠) , equation (3.14) takes the form the following equation 

 

𝛼(𝑠) − 𝑥0 =
−1

𝜀2

𝑡(𝑠)𝑁(𝑠) +
1

𝜀2

𝑡 ′(𝑠)

𝜏(𝑠)
𝐵(𝑠). 

 
So, if we take the derivative of above equation 
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𝑇(𝑠) =
−1

𝜀2

𝑡 ′(𝑠)𝑁(𝑠) −
1

𝜀2

𝑡(𝑠)(−𝜀1𝜀3𝜅(𝑠)𝑇(𝑠) − 𝜀2𝜀3𝜏(𝑠)𝐵(𝑠)) 

+
1

𝜀2

(
𝑡 ′(𝑠)

𝜏(𝑠)
)

′

𝐵(𝑠) +
1

𝜀2

𝑡 ′(𝑠)

𝜏(𝑠)
𝜏(𝑠)𝑁(𝑠) 

and 

(−1 +
𝜀1𝜀3

𝜀2

𝜅(𝑠)𝑡(𝑠))𝑇(𝑠) + (
𝜀2𝜀3

𝜀2

𝜏(𝑠)𝑡(𝑠) +
1

𝜀2

(
𝑡 ′(𝑠)

𝜏(𝑠)
)

′

) 𝐵(𝑠) = 0. 

 
We know that  𝑇(𝑠)  and  𝐵(𝑠)  are linearly independent. Thus, 
 

                                                                                       −1 +
𝜀1𝜀3

𝜀2
𝜅(𝑠)𝑡(𝑠) = 0,                                                                           (3.15) 

 

                                                                                     𝜀3𝜏(𝑠)𝑡(𝑠) +
1

𝜀2
(

𝑡 ′(𝑠)

𝜏(𝑠)
)
′

= 0.                                                                      (3.16) 

 
Corollary 3.2. Let  𝛼  :   𝐼 ⊂ 𝑅 → 𝐸1

3  be a unit speed timelike curve with non-zero and non-constant curvature in 
Minkowski 3-space. If every normal plane contains the point  𝑥0  in  𝑅3 , i.e, if  𝛼(𝑠)  is a normal curve, then the 

curve is a spherical, i.e,  
𝜏(𝑠)

𝜅(𝑠)
= (

𝜅′(𝑠)

𝜅2(𝑠)𝜏(𝑠)
)
′

.  

 

 Proof. From the equation (3.15), we obtain  
𝜀3

𝜀2
= 1.  So we can say that  𝛼  is a timelike curve. Also using the 

equation (3.16), we get 

𝜀3𝜏(𝑠)𝑡(𝑠) +
1

𝜀2

(
𝑡 ′(𝑠)

𝜏(𝑠)
)

′

= 0. 

Then using the last equation, we obtain 

𝜏(𝑠)

𝜅(𝑠)
=

−1

𝜀1𝜀2𝜀3

(
−𝜀1𝜅′(𝑠)

𝜅2(𝑠)𝜏(𝑠)
)

′

. 

 
This completes the proof. 
 
Corollary 3.3. Let  𝛼  :   𝐼 ⊂ 𝑅 → 𝐸1

3  be a unit speed non-null curve with non-zero and non-constant curvature in 
Minkowski  3-space. If every osculating plane contains the point  𝑥0  in  𝑅3 , i.e, if  𝛼(𝑠)  is a osculating curve, then 
the curve is a planar curve. 
 
Proof. Since the osculating plane of  𝛼(𝑠)  is the perpendicular plane to  𝐵(𝑠) , we have  ⟨𝛼(𝑠) − 𝑥0, 𝐵(𝑠)⟩ = 0.  If 
we take the derivative of this expression, 
 

⟨𝑇(𝑠), 𝐵(𝑠)⟩ + ⟨𝛼(𝑠) − 𝑥0, 𝐵′(𝑠)⟩ = 0. 

 
Then by substituting from the Frenet-Serret formula we have 
 

𝜏(𝑠)⟨𝛼(𝑠) − 𝑥0, 𝑁(𝑠)⟩ = 0, 
 
 𝜏 = 0  is obtained from the last equation. 
 
 
4. Discussion and Conclusion 
 
Curves theory has studied in Euclidean  3 −space for a long time. Rectifying, normal and osculating curves which 
are special curve types have been studied many authors in different spaces. As I mentioned in the abstract part,  
the difference of this work is to characterize these curves from another point of view in Minkowski 3-space. 
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