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Keywords Abstract: The planes which is spanned by {T(s),B(s)}, {N(s),B(s)} and

Rectifying curve, {T(s),N(s)} are known as the rectifying, normal and osculating plane, respectively.

gggﬁiﬁg;’ﬁ;\/e The curve « is called rectifying, normal and osculating curve for which the position
vector a always lie in its rectifying, normal and osculating plane, respectively. It is
also known that if all rectifying planes of a non-planar curve in E3 pass through a
particular point, then the ratio of its torsion and curvature is a non-constant linear
function. Rectifying, normal and osculating curves are studied many times in
different spaces by many researchers. The aim of this paper is to characterize these
curves from another point of view in Minkowski 3-space.

E3 Uzayinda Baz1 Ozel Egrilerin Karakterizasyonu

Anahtar Kelimeler 0z: {T(s),B(s)}, {N(s),B(s)} ve {T(s),N(s)} vektorleri tarafindan gerilen
Rektifiyan egri, diizlemler sirasiyla rektifiyan diizlem, normal diizlem ve oskiilator diizlem adim
Normal egri, alirlar. Bir a egrisi ise pozisyon vektoriiniin kendi rektifiyan diizleminde, normal

Oskiilator egri diizleminde ya da oskiilator diizleminde yatmasiyla sirasiyla rektifiyan, normal ve

oskiilatér egri olarak isimlendirilir. Ayrica 3-boyutlu Oklid uzayinda diizlemsel
olmayan biitiin rektifiyan egriler i¢in ¢ok iyi bilinen bir karakterizasyon vardir. Bu
karakterizasyon, egrinin torsiyon ve egriliginin orani sabit olmayan lineer fonksiyon
olan egriler rektifiyandir seklindedir. Rektifiyan, normal ve oskiilatér egriler, pek
¢ok arastirmaci tarafindan farkli uzaylarda pek ¢ok kez calisilmistir. Bu ¢alismanin
amaci 3-boyutlu Minkowski uzayinda farkl bir bakis agisi ile bu egrileri karakterize
etmektir.

*lgili Yazar, email: beyhanyilmaz@ksu.edu.tr

1. Introduction

In differential geometry, the theory of curves is one of the main study areas in Euclidean 3-space. In three-
dimensional Euclidean space, to explain the geometric structure of any regular spatial curve, an orthonormal basis
T(s),N(s) and B(s) called the Frenet frame at each point of the curve is described.

The planes which is spanned by {T(s), B(s)},{N(s),B(s)} and {T(s),N(s)} are known as the rectifying, normal
and osculating plane, respectively. The curve « is called rectifying, normal and osculating curve for which the
position vector « always lie in its rectifying, normal and osculating plane, respectively [3]. These curves are
studied by many authors and many characterizations are obtained [1, 4, 5, 6, 7, 9].

In this paper, we study these special curves in E3 . These curves have previously been worked on in different
spaces, but the importance of this study is to obtain results using a different method.
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2. Material and Method
Let E3 be Minkowski 3 — space with the following metric

(), = R®*xR®>R
(w,v) = (W, V), = vy + UV, — Uz

where u = (uy,u,,u3) and v = (vy,v,,v3) are the usual coordinate system in E3. An arbitrary vector u € E3
said spacelike if (u,u);, >0 or u =0, timelike if (u,u);, < 0 and null (lightlike) if (u,u), = 0 but u # 0. This
classification can be generalized for regular curve a according as the casual character of their tangent vectors. In
other words, the curve «a is called a spacelike (resp. timelike and lightlike) if its velocity vector a'(t) is spacelike

(resp. timelike and lightlike) for every t € I. The norm of a vector u is given by ||u|l, = +/[{u, u),|.

Assume that {T'(s), N(s), B(s)} is the moving positive directed frame along the unit speed curve «.Here T(s) =
a”(s)

"l

a'(s) is a tangent vector, N(s) = is a principal normal vector and B(s) = T(s) X N(s) is a binormal vector

field along the curve a.

Frenet-Serret formulas can be given as follows, see [8]:

T'(s) 0 k(s) 0 T(s)
N'(s) | =| —a1&36(s) 0 —g857(s) || N(s) |,
B'(s) 0 7(s) 0 B(s)

where k(s) and t(s) are curvature and torsion of «, respectively. Moreover, the Frenet-Serret vectors satisfy
<T(S)' T(S))L = gll <N(S), N(S))L = 825 <B(S)' B(S)>L = 53;

(T(s),N($)), =(T(s),B(s)), = (N(s),B(s)), =0,
and

T(s) X N(s) = B(s),
B(s) X N(s) = &T(s),
T(s) X B(s) = g N(s).

Definition 2.1. A curve is congruent to a rectifying curve if and only if the ratio E is a nonconstant linear function
of arclenght of parameter [2]. Also, unit speed curve with nonzero curvatures lies on a sphere if and only if

T PC[
- (ﬁ) [3].
3. Results

In this section we give some new corollaries related to special curves in Minkowski 3-space. Assume that a(s) be
a unit speed non-null curve with non-zero curvature in Minkowski 3-space. Since the rectifying plane of a(s) is
the perpendicular plane to N(s), we have

{a(s) —xo, N(s)) = 0.
If we take the derivative of this expression, we obtain that
(T(s), N(s)) + {a(s) — xo,N'(s)) = 0.

By substituting from the Frenet-Serret formula, we achieve the following equation
—&183K(s)(a(s) — xo, T(s)) — &2637(s){ax(s) — xo, B(s)) = 0. (3.1)

So we can easily see that,
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(a(s) = 0, B()) = 222 (a(s) = x0,T). (32)

If we take the derivative of equation (3.1), we obtain that

—&163((T(5), k()T (5)) + (a(s) — xo, k ()T (s) + K2 (s)N(s)))
—&,63((T(5), T(s)B(5)) + (a(s) — x0, 7 (s)B(s) + T*(s)N(s))) =

If necessary arrangements are made, we can easily see that

—efesk(s) — ere3k (S){a(s) — %0, T(5)) — £2637 (s){a(s) — xo, B(s)) = 0.
If equation (3.2) is written in the last equation, we get

efesk(s) = &esfa(s) — xo,T(S))(—K () +7(s) E i)

Then using the last two equations we reach the following equations;

B €1k (s)
(a(s) —xo, T(s)) = o (S)% (3.3)

and
(a(s) = xo, B(s)) = 2K (3.4)

&2 T(S) —k'(s)+T (s)Kgg

Then if we work with the denominator of equation (3.3), we have
K(s) 7 ()k(s) —k'(s)t(s)
w(s) (s) ’
() 2
_ (@) K*(s)
w(s)

—k'(s) +7(s)

If we using above result in equation (3.3), we can see that

(s)
(a(s) —x0,T(s)) = & (f(f))) (3.5)
K(S)

So, we obtain that

(a(s) = x0,B(s)) = (T(S)) (3.6)
K(s)
From the equations (3.5) and (3.6), the equation of the curve a(s) is obtained as follows
%
a(s) — X9 = @T(S) - 8283 (T(S)) B( ) (37)
Kk(s) K(s)
Using the equallty = H(s) which is called the harmonic curvature function, we have
&)~ %0 = TN T(5) - B ().
° H ( ) €283 H'(s)

If we take the derivative of this equation, we get
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((53) = 1)+ (1300 ~ g @)N + (=5 (i) ) B = 0.

Since T'(s),N(s) and B(s) are linearly independent, we obtain that

HE)Y .
(H—()) —1=0, (3.8)
H(s)
LG )—£2£3H(5) 7(s) = 0, (3.9)
and
1 1 ’
_5253 (H’(S)) =0. (310)

Corollary3.1.Let « : I c© R - E3 beaunitspeed timelike curve with non-zero curvature in Minkowski 3-space.
If every rectifying plane contains the point x, in R?,i.e, if a(s) is a rectifying curve, then i is a linear function.

Proof. From the equation (3.9), we obtain that €,&; = 1. So we can easily say that the curve a(s) is a timelike in

Minkowski 3-space. Easily using the equations (3.8) or (3.10), H'(s) =0 and H(s) = % =c¢s+d for some

constants c¢,d and arc length s.

With similar thought, assume that a(s) be a unit speed non-null curve with non-zero curvature in Minkowski 3-
space. Since the normal plane of a(s) is orthogonal to T(s), we have

(a(s) = x0,T(s)) = 0.

If we take the derivative of this expression, we get

(T(s), T(s)) + {a(s) —x,, T'(s)) = 0.
Then by substituting from the Frenet-Serret formula, we have

&1+ {a(s) — xo, k(s)N(s)) = 0, (3.11)

(a(s) — xo,N(s)) = ;(—851) (3.12)
If we take the derivative of equation (3.11), we can see
(a(s) = %0, K (IN(5)) = e183K* ()@ (5) — %o, T(5)) — £283k()T(s){(x(5) = X0, B(5)) = 0.

So if we write equation (3.12) in the last equation, we obtain

&1 !
_ _ 1 G
{a(s) = x0, B(s)) =~~~ (3.13)
Using the equations (3.12) and (3.13), we can see that
_ _(K(s))
a(s) —x, = - K(S) N(s) + o o) B(s). (3.14)

If we say % = t(s), equation (3.14) takes the form the following equation

-1 t'(s)
a(s) —xg = —t(s)N(s) + —ﬁB(s).

So, if we take the derivative of above equation
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-1, 1
T(s) =— ot (SN(s) —— t(S)(—Slsgk(S)T(S) — £,637(s)B(s))

(t (S)) B(s) + ( LS NG

(s) &, 7(s)
and
-1+ —K(S)t(S))T(S) + (—’L’( s)t(s) +— <(—))>>B(s) =0.
&2
We know that T(s) and B(s) are linearly independent. Thus,
+85 Tr()E(s) = 0, (3.15)
eT(s)t(s) +— - (i((;)) =0. (3.16)

Corollary 3.2.Let « : I © R — E? be a unit speed timelike curve with non-zero and non-constant curvature in
Minkowski 3-space. If every normal plane contains the point x, in R3?,i.e, if a(s) is a normal curve, then the

7(s) K (s)
curve is a spherical, i.e, prke (KZ(S)T(S)) .

Proof. From the equation (3.15), we obtain % — 1. So we can say that a is a timelike curve. Also using the

€2

&3T(s)t(s) + — (T((SS)))

equation (3.16), we get

Then using the last equation, we obtain

t(s) -1 <—£1rc'(s) )

K(s)  g8,85 \K2(5)T(5)

This completes the proof.
Corollary 3.3.Let @ : I < R — E} be a unit speed non-null curve with non-zero and non-constant curvature in
Minkowski 3-space. If every osculating plane contains the point x, in R?,i.e,if a(s) is a osculating curve, then

the curve is a planar curve.

Proof. Since the osculating plane of a(s) is the perpendicular plane to B(s), we have (a(s) — xy, B(s)) = 0. If
we take the derivative of this expression,

(T(s),B(s)) + (a(s) — x0,B'(s)) = 0.
Then by substituting from the Frenet-Serret formula we have
T(s){a(s) — xo, N(s)) = 0,

T = 0 is obtained from the last equation.

4., Discussion and Conclusion

Curves theory has studied in Euclidean 3 —space for a long time. Rectifying, normal and osculating curves which
are special curve types have been studied many authors in different spaces. As [ mentioned in the abstract part,
the difference of this work is to characterize these curves from another point of view in Minkowski 3-space.
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