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Abstract
In this paper, we study the left orthogonal class of max-flat modules which are the homo-
logical objects related to s-pure exact sequences of modules and module homomorphisms.
Namely, a right module A is called MF-projective if Ext1

R(A,B) = 0 for any max-flat right
R-module B, and A is called strongly MF-projective if Exti

R(A,B) = 0 for all max-flat right
R-modules B and all i ≥ 1. Firstly, we give some properties of MF -projective modules
and SMF-projective modules. Then we introduce and study MF-projective dimensions for
modules and rings. The relations between the introduced dimensions and other (classi-
cal) homological dimensions are discussed. We characterize some classes of rings such as
perfect rings, QF rings and max-hereditary rings by (S)MF -projective modules. We also
study the rings whose right ideals are MF-projective. Finally, we characterize the rings
whose MF -projective modules are projective.
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1. Introduction
Throughout, R will denote an associative ring with identity, and modules will be unital

right R-modules, unless otherwise stated. As usual, we denote by MR (RM) the category
of right (left) R-modules. For a module A, E(A), id(A), pd(A) and A+ denote the injective
hull, injective dimension, projective dimension and the character module HomZ(A,Q/Z)
of A, respectively.

Let C be a class of R-modules and A be an R-module. A homomorphism f : A → C
with C ∈ C is called a C-preenvelope of A if for any homomorphism g : A → D with
D ∈ C, there is a homomorphism h : C → D such that hf = g (see [8]). Moreover, if
the only such h are automorphisms of C when C = D and g = f , the C-preenvelope is
called a C-envelope of A. Dually, we have the definitions of a C-precover and a C-cover.
C-envelopes (C-covers) may not exist in general, but if they exist, they are unique up
to isomorphism. We will denote by C⊥ = {X : Ext1

R(C,X) = 0 for all C ∈ C} the
right orthogonal class of C, and by ⊥C = {X : Ext1

R(X,C) = 0 for all C ∈ C} the left
orthogonal class of C. A pair (F,C) of classes of right R-modules is called a cotorsion
theory (for the category of R-modules) if F⊥ = C and ⊥C = F. A cotorsion theory (F,C)
is called perfect (complete) if every right R-module has a C-envelope and an F-cover (a
special C-preenvelope and a special F-precover). A cotorsion theory (F,C) is said to be
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hereditary if whenever 0 → L
′ → L → L

′′ → 0 is exact with L,L
′′ ∈ F, then L

′ is also in
F (see [9]). By [9], (F,C) is hereditary if and only if whenever 0 → C

′ → C → C
′′ → 0 is

exact with C,C
′ ∈ C, then C

′′ is also in C.
Since its development, the Cohn purity plays a significant role in module theory and

homological algebra. One of the main reason is that, some significant homological ob-
jects such as, flat modules, cotorsion modules, absolutely pure modules and pure-injective
modules arose from this notion of purity. Recall that, the submodule A of B is called
s-pure submodule of B [5] if i ⊗ 1S : A ⊗ S → B ⊗ S is a monomorphism for each sim-
ple left module S. Similarly, the submodule A of B is called neat submodule of B if
Hom(S,B) → Hom(S,B/A) is an epimorphism for each simple right module S. Un-
like the generation of pure submodules, the notions of s-pure and neat submodules are
not only inequivalent they are also incomparable. The equality of the notions of s-pure
and neat submodules is considered in [12], which is hold over the commutative domains
whose maximal ideals are invertible, and these domains termed as N -domains. In [6], S.
Crivei proved that if the ring is commutative and the maximal ideals are principal, then
the notions s-pure and neat submodules coincide. Recently, the commutative rings with
this property are completely characterized in [19, Theorem 3.7]. These are exactly the
commutative rings whose maximal ideals are finitely generated and locally principal.

A left R-module A is called max-injective if for the inclusion map i : I → R with
I maximal left ideal, and any homomorphism f : I → A there exist a homomorphism
g : R → A such that gi = f , or equivalently Ext1

R(R/I,A) = 0 for any maximal left
ideal I. A ring R is said to be left max-injective if R is max-injective as a left R-module
[26]. As observed by Crivei in [6, Theorem 3.4], a left R-module A is max-injective if
and only if A is a neat submodule of every module containing it. A right R-module
A is called max-flat if TorR

1 (A,R/I) = 0 for any maximal left ideal I of R (see [25]).
A right R-module A is max-flat if and only if A+ is max-injective by the isomorphism
Ext1

R(R/I,A+) ∼= (TorR
1 (A,R/I))+ for any maximal left ideal I of R. Indeed, we show in

Lemma 4.1 that, a right R-module A is max-flat if and only if any short exact sequence
ending with A is s-pure.

So far, s-pure and neat submodules and homological objects related to s-pure and neat-
exact sequences are studied by many authors (see, [3, 5–7,12–14,19,26,27]).

The main purpose of this paper is to continue the study and investigation of the homo-
logical objects related to s-pure and neat short exact sequences. Namely, we have studied
max-flat modules and left orthogonal class of max-flat modules.

Along the way, the concepts of MF -projective and strongly MF -projective modules are
first introduced in section 2. Several elementary properties of MF -projective and SMF -
projective modules are obtained in this section. We prove that a right R-module A is
MF -projective if and only if A is a cokernel of a max-flat preenvelope f : C → B with
B projective. It is shown that a ring R is right perfect if and only if all max-flat right
R-modules are (S)MF -projective. It is also proven that R is a QF ring if and only if
every right R-module is (S)MF -projective.

In section 3 of this article, we define and discuss MF -projective dimensions for modules
and rings. For a right R-module A, the MF -projective dimension mfpd(A) of A is defined
to be the smallest integer n ≥ 0 such that Extn+i

R (A,B) = 0 for any max-flat right R-
module B and any integer i ≥ 1. If no such n exists, set mfpd(A) = ∞. Put rmfpD(R) =
sup{mfpd(A) : A is a right R-module}, and call rmfpD(R) the right MF-projective
dimension of R. It is proven that rmfD(R) ≤ n if and only if id(A) ≤ n for all max-
flat right R-modules A. Certain characterizations of QF rings in terms of MF -projective
modules are also obtained. We characterize the rings whose simple right R-modules are
MF -projective. We also introduce the notion of right MF -hereditary rings, and then give
some characterizations of such rings. It is shown that a ring R is right MF -hereditary if
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and only if every submodule of an MF -projective right R-module is MF -projective if and
only if rmfD(R) ≤ 1 if and only if id(A) ≤ 1 for all max-flat right R-modules A.

In section 4, we study max-flat preenvelopes which are epimorphisms. We first consider
the commutative rings whose maximal ideals are finitely generated and locally principal
over which neat-flat modules and max-flat modules coincide. By using this result, over a
commutative ring whose maximal ideals are finitely generated and locally principal it is
proven that the following are equivalent: (1) R is max-hereditary; (2) every (simple) R-
module has an epic max-flat preenvelope; (3) every simple R-module has an epic projective
preenvelope; (4) every (finitely presented) MF -projective module is projective; (5) R is a
PS ring.

2. Left orthogonal class of max-flat modules
We begin with the following definition.

Definition 2.1. A right module A is called MF-projective if Ext1
R(A,B) = 0 for any

max-flat right R-module B. A is said to be strongly MF-projective (SMF -projective for
short) if Exti

R(A,B) = 0 for all max-flat right R-modules B and all i ≥ 1.
Recall that a ring R is said to be a left C-ring if Soc(R/I) ̸= 0 for every proper essential

left ideal I of R. Right perfect rings, left semiartinian rings are well known examples of
left C-rings ([4, 10.10]).
Remark 2.2. (1) Projective modules are clearly (S)MF -projective, but the converse need
not to be true in general. For example, let R be a local QF ring R = k[X]/(X2), where
k is a field, and X denotes the residue class of X in R. Then every right R-module is
(S)MF -projective by Proposition 2.11, so is the ideal X, in particular. However X is not
projective, because X2 = 0 implies that X is not a free ideal in the local ring R.

(2) In [11], Fu et al. defined and discussed copure-projective modules. A right module
A is called copure-projective provided that Ext1

R(A,B) = 0 for any flat right module B.
Since every flat right module is max-flat, every MF -projective right module is copure-
projective. For the converse, let R be a left C-ring. It is shown in [24, Lemma 4] that
every max-injective left module is injective, so in this case, every max-flat right module is
flat. Thus every copure-projective right module is MF -projective.

Recall that the class of max-flat modules is closed under extensions, direct sums, direct
summands by [27, Proposition 2.4(2)]. Moreover it is closed under pure submodules and
pure quotients by the following lemma.
Lemma 2.3. (1) The class of max-flat modules is closed under pure submodules and

pure quotients.
(2) The class of MF -projective modules is closed under extensions, direct sums and

direct summands.
Proof. (1) Consider the pure exact sequence of right R-modules 0 → B → A → A/B → 0
with A max-flat. Since 0 → (A/B)+ → A+ → B+ → 0 splits and A+ is max-injective,
B+ and (A/B)+ is max-injective. Hence B and A/B is max-flat.
(2) The class of MF -projective modules is closed under extensions by using the functor
Ext1

R(−, F ) for any max-flat module F . Also, it is closed under direct sums and direct
summands by using the isomorphism Ext1

R(⊕i∈IAi, F ) ∼=
∏

i∈I Ext1
R(Ai, F ) for any max-

flat module F and a family of modules (Ai)i∈I by [23, Theorem 7.13]. �
Recall that a ring R is called left max-hereditary if every maximal left ideal is projective

(see [1]). This is equivalent to saying that every factor of a max-injective left R-module
is max-injective (see [1, Proposition 1.2]). A ring R is called a left SF-ring if each simple
left R-module is flat (see [22]). The following example shows that a left max-hereditary
ring does not need to be left SF-ring.
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Example 2.4. Assume that R is a left Noetherian left hereditary ring that is not semisim-
ple. Thus every left ideal of R is projective, and so R is left max-hereditary. But R is not
a left SF -ring. Otherwise, since R is left Noetherian, every simple left R-module is finitely
presented. If R was a left SF-ring, then every simple left R-module would be projective
by [23, Corollary 3.58], whence R would be semisimple, a contradiction.

We shall now give a condition for the converse of Remark 2.2(1).

Proposition 2.5. Let R be a left max-hereditary ring or a left SF -ring. Then the follow-
ings are equivalent for a module A.

(1) A is projective.
(2) A is SMF -projective.
(3) A is MF -projective.

Proof. We know that (1) ⇒ (2) ⇒ (3) is always true.
(a) First, assume that R is a left max-hereditary ring.
(3) ⇒ (1) Let A be an MF -projective right module. Then there is an exact sequence

0 → C → B → A → 0 with B projective. Then this exact sequence induces the exactness
of 0 → A+ → B+ → C+ → 0. Since B+ is injective, C+ is max-injective by [1, Proposition
1.2] and so C is max-flat. Thus, Ext1

R(A,C) = 0, that is, 0 → C → B → A → 0 splits. It
follows that A is projective.

(b) Now, assume that R is a left SF -ring.
(3) ⇒ (1) Let A be an MF -projective right module. Then there is an exact sequence

0 → C → B → A → 0 with B projective. Since R is a left SF -ring, TorR
1 (C,R/I) = 0

for any maximal left ideal I of R, and so C is max-flat. Thus, Ext1
R(A,C) = 0, that is,

0 → C → B → A → 0 splits. It follows that A is projective. �
By definitions, every SMF -projective module is MF -projective. For the converse we

have the following condition.

Proposition 2.6. Let R be a ring and A an MF -projective right R-module. Then A is
SMF -projective if and only if for any exact sequence 0 → C → B → A → 0 of right
R-modules with B projective, C is SMF -projective.

Proof. Let 0 → C → B → A → 0 be an exact sequence of right R-modules with B
projective. If A is SMF -projective, then Exti

R(C,F ) ∼= Exti+1
R (A,F ) = 0 for any max-flat

right R-module F and i ≥ 1. So C is SMF -projective. Conversely, if C is SMF -projective,
then Exti

R(A,F ) ∼= Exti−1
R (C,F ) = 0 for any max-flat right R-module F and i ≥ 2. But

Ext1
R(A,F ) = 0 by hypothesis, and so A is SMF -projective. �

The following proposition gives some characterizations of MF -projective modules in
terms of max-flat preenvelopes.

Proposition 2.7. The following are equivalent for a right R-module A.
(1) A is MF -projective.
(2) A is projective with respect to every exact sequence 0 → K → T → L → 0 with K

max-flat.
(3) For every exact sequence 0 → C → B → A → 0, with B max-flat, C → B is a

max-flat preenvelope of C.
(4) A is a cokernel of a max-flat preenvelope C → B with B projective.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are trivial.
(2) ⇒ (1) Let B be a max-flat right R-module. The exactness of the sequence 0 → B →

E(B) → E(B)/B → 0 induces the exact sequence Hom(A,E(B)) → Hom(A,E(B)/B) →
Ext1

R(A,B) → 0. Since Hom(A,E(B)) → Hom(A,E(B)/B) is epic by (2), Ext1
R(A,B) =

0. So A is MF -projective.



On MF-projective modules 475

(3) ⇒ (4) Since there is an exact sequence 0 → C → P → A → 0 with P projective, (4)
follows from (3).

(4) ⇒ (1) Let A be a cokernel of a max-flat preenvelope f : C → B with B projective.
Then, there is an exact sequence 0 → D → B → A → 0 with D = Im(f). For each
max-flat right R-module F , the sequence Hom(B,F ) → Hom(D,F ) → Ext1

R(A,F ) → 0
is exact. Note that Hom(B,F ) → Hom(D,F ) is epic by (4). Thus Ext1

R(A,F ) = 0, and
so A is MF -projective. �

Now we characterize MF -projective modules over a commutative ring.

Proposition 2.8. The following statements are equivalent for a commutative ring R and
an R-module A.

(1) A is MF -projective.
(2) P ⊗R A is MF -projective for any projective R-module P .
(3) Hom(P,A) is MF -projective for any finitely generated projective R-module P .

Proof. (1) ⇒ (2) Let P be a projective R-module and consider by [23, Exercise 9.20] the
isomorphism Ext1

R(P ⊗R A,B) ∼= Hom(P,Ext1
R(A,B)). For any max-flat R-module B,

we have Ext1
R(A,B) = 0 since A is MF -projective. This says that Ext1

R(P ⊗R A,B) = 0.
Thus P ⊗R A is MF -projective.

(1) ⇒ (3) Let P be a finitely generated projective R-module. By using [23, Lemma
3.59] and mimicking the proof of [23, Theorem 9.51], we have the isomorphism P ⊗R

Ext1
R(A,B) ∼= Ext1

R(Hom(P,A), B). Since A is MF -projective, Ext1
R(A,B) = 0 for any

max-flat R-module B. This says that Ext1
R(Hom(P,A), B) = 0, and so Hom(P,A) is

MF -projective.
(2) ⇒ (1) and (3) ⇒ (1) are clear by letting P = R. �
A ring R is called left max-coherent if every maximal left ideal is finitely presented. A

right R-module A is called MI-flat if TorR
1 (A,B) = 0 for any max-injective left R-module

B (see [27]). These modules were discovered when studying max-flat preenvelopes.

Proposition 2.9. Let R be a left max-coherent ring. Then:
(1) Every MF -projective right R-module is MI-flat.
(2) Every finitely presented MI-flat right R-module is MF -projective.

Proof. (1) Let A be an MF -projective right R-module. For any max-injective left R-
module E, E+ is max-flat by [27, Theorem 2.3], and hence Ext1

R(A,E+) = 0. Thus from
the standard isomorphism Ext1

R(A,E+) ∼= (TorR
1 (A,E))+ in [8, Theorem 3.2.1], we have

TorR
1 (A,E) = 0. So A is MI-flat.

(2) Let A be a finitely presented MI-flat right R-module. Then A is the cokernel of a
max-flat preenvelope g : C → B with B projective by [27, Proposition 3.7(2)]. Hence, A
is MF -projective by Proposition 2.7. �

It is well known that R is a right perfect ring if and only if every flat right R-module is
projective. The converse of Proposition 2.9(1) characterizes the right perfect rings over a
left max-coherent ring.

Theorem 2.10. Let R be a ring. Then the followings are equivalent.
(1) R is right perfect.
(2) All max-flat right R-modules are projective.
(3) All max-flat right R-modules are SMF -projective.
(4) All max-flat right R-modules are MF -projective.
(5) All flat right R-modules are MF -projective.

Also, if R is a left max-coherent ring, then the above conditions are equivalent to:
(6) All MI-flat right R-modules are MF -projective.
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Proof. (2) ⇒ (3) ⇒ (4) ⇒ (5) and (6) ⇒ (5) are clear.
(1) ⇒ (2) Let A be any max-flat right R-module. Then A+ is max-injective. Since R

is a left C-ring, A+ is injective by [24, Lemma 4], whence A is flat. By the perfectness of
R, A is projective.

(5) ⇒ (1) Let A be a flat right R-module. There is an exact sequence 0 → B →
P → A → 0 with P projective. Note that, by the flatness of A, B is flat. Since A is
MF -projective by (5), Ext1

R(A,B) = 0. So 0 → B → P → A → 0 splits, whence A is
projective.

(1) ⇒ (6) Let A be an MI-flat right R-module and F a max-flat right R-module. Since
R is a left C-ring, F+ is injective by [1, Corollary 1.1], and so F is flat. Also, since R is a
left max-coherent ring, R is left coherent by [1, Corollary 1.1]. Thus, right perfectness of
R gives from [16, Proposition 1.4] that pure injectivity of F . But F is a pure submodule
of F++, so F is a direct summand of a max-flat right R-module F++. Because F+ is
max-injective, Ext1

R(A,F++) ∼= (TorR
1 (A,F+))+ = 0. Therefore Ext1

R(A,F ) = 0. So, A is
MF -projective. �

Recall that R is said to be a QF -ring if R is left Noetherian and left self-injective, or
equivalently R is right artinian and right self-injective. By a well-known result of Faith
and Walker [10], R is QF if and only if every projective right R-module is injective. In
the following result, we give a new characterization of a QF ring.

Proposition 2.11. R is a QF ring if and only if every right R-module is (S)MF -
projective.

Proof. Let A be a right R-module and B a max-flat right R-module. Since R is right
artinian, R is right perfect, and so B is projective by Theorem 2.10. Thus B is an injective
right R-module by the hypoyhesis. This means that Exti+1

R (A,B) = 0 for any max-flat
right R-module B and any i ≥ 0. Hence A is (S)MF -projective. Conversely, let A be a
projective right R-module. Since A is max-flat, by the hypoyhesis Exti+1

R (B,A) = 0 for
any right R-module B and any i ≥ 0. So A is injective, whence R is a QF -ring. �

In the following, we characterize when every simple right module is MF -projective.

Lemma 2.12. Every simple right R-module is MF -projective if and only if every max-flat
right R-module is max-injective.

Proof. Let A be a max-flat right R-module. Then by the hypothesis, Ext1
R(R/I,A) = 0

for any maximal right ideal I of R. It follows that A is max-injective. Conversely, let S be
a simple right R-module. For any max-flat right R-module A, A is max-injective. Thus
Ext1

R(S,A) = 0, whence S is MF -projective. �

In general, a left SF-ring does not need to be a semisimple ring. The fact that every
simple right (left) R-module is projective if and only if R is semisimple together with
Proposition 2.5 and Lemma 2.12 gives rise the following corollary.

Corollary 2.13. Let R be a ring. The followings are equivalent.
(1) R is a semisimple ring.
(2) R is a left max-coherent left SF -ring.
(3) R is a left max-hereditary ring and every simple right R-module is MF -projective.
(4) R is a left max-hereditary ring and every max-flat right R-module is max-injective.
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3. MF-projective dimensions
In this section we investigate the MF-projective dimension of modules. We begin with

the following definition.
Definition 3.1. Let R be a ring. For a right R-module A, let mfpd(A) denote the
smallest integer n ≥ 0 such that Extn+i

R (A,B) = 0 for any max-flat right R-module B
and any integer i ≥ 1, and call mfpd(A) the MF-projective dimension of A. If no such n
exists, set mfpd(A) = ∞.

Put rmfpD(R) = sup{mfpd(A) : A is a right R-module}, and call rmfpD(R) the right
MF-projective dimension of R. Similarly we have lmfpD(R).

The following remark follows from definitions and Proposition 2.11.
Remark 3.2. (1) A module A is SMF -projective if and only if mfpd(A) = 0.
(2) A ring R is a QF -ring if and only if rmfpD(R) = 0.

The copure projective dimension cpd(A) of an R-module A is defined in [11] as the
smallest integer n ≥ 0 such that Extn+i

R (A,B) = 0 for any flat right R-module B and
any i ≥ 1. The right copure projective dimension of a ring R is defined as rcpD(R) =
sup{cpd(A)|A is a right R-module}. By the following proposition, we have the relation
with right copure projective dimension of rings.
Proposition 3.3. Let R be a ring. Then rmfpD(R) ≤ rcpD(R). Moreover, if rcpD(R) <
∞, then rmfpD(R) = rcpD(R).
Proof. It is clear that rmfpD(R) ≤ rcpD(R), since any flat right R-module is max-flat.
Now suppose that rmfpD(R) = n < ∞. Let A be a right R-module with cpd(A) = k < ∞.
Suppose k > n. For any flat right R-module B, consider the short exact sequence 0 →
C → P → B → 0 with P projective. Since B and P are flat, C is flat by [17, Corollary
4.86]. So we get an exact sequence Extk

R(A,P ) → Extk
R(A,B) → Extk+1

R (A,C). Since
rmfpD(R) = n < k, Extk

R(A,P ) = 0. Also since cpd(A) = k, Extk+1
R (A,C) = 0. Then

Extk
R(A,B) = 0, whence cpd(A) < k, a contradiction. Thus k ≤ n, and rcpD(R) ≤

rmfpD(R). �
It is clear that rmfpD(R) ≤ rD(R), where rD(R) denote the right global dimension of

R. In general, rmfpD(R) ̸= rD(R). For example, let R be a QF ring with rD(R) ̸= 0 (e.g.
R = Z/4Z), then rmfpD(R) = 0. The next corollary is due to Fu et al. [11, Corollary
4.4].
Corollary 3.4. Let R be a ring with rD(R) < ∞. Then rmfpD(R) = rcpD(R) = rD(R).

From now on, for the class of SMF -projective right R-modules we write S MF .
Lemma 3.5. (S MF , S MF ⊥) is a hereditary cotorsion theory.

Proof. Let A ∈ S MF and B ∈ S MF ⊥. Consider the short exact sequence 0 → C →
P → A → 0 with P projective. Then Ext2

R(A,B) ∼= Ext1
R(C,B) = 0 by Proposition 2.6.

Let 0 → B → E → D → 0 be an exact sequence with E injective. Then Ext1
R(A,D) ∼=

Ext2
R(A,B) = 0, and so D ∈ S MF ⊥. Now let G ∈ ⊥(S MF ⊥), then Ext2

R(G,B) ∼=
Ext1

R(G,D) = 0. Therefore Exti
R(G,B) = 0 for any i ≥ 1 by induction. Since max-flat

modules are contained in S MF ⊥, Exti
R(G,F ) = 0 for any max-flat rightR-module F and

i ≥ 1, soG ∈ S MF . Hence (S MF ,S MF ⊥) = (⊥(S MF ⊥),S MF ⊥) is a cotorsion
theory. Let 0 → K → L → M → 0 be an exact sequence with L,M ∈ S MF . Take
N ∈ S MF ⊥. Then the sequence 0 = Ext1

R(L,N) → Ext1
R(K,N) → Ext2

R(M,N) = 0 is
exact, whence Ext1

R(K,N) = 0 for any N ∈ S MF ⊥. Thus K ∈ S MF . �
Now we have the following characterizations of modules with finite MF -projective di-

mension.
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Proposition 3.6. Let R be a ring, n a nonnegative integer and A a right R-module. The
following are equivalent.

(1) mfpd(A) ≤ n.
(2) Extn+i

R (A,B) = 0 for any right R-module B ∈ S MF ⊥ and i ≥ 1.
(3) Extn+1

R (A,B) = 0 for any right R-module B ∈ S MF ⊥.
(4) If 0 → C → Bn−1 → ... → B1 → B0 → A → 0 is exact with each Bi projective,

then C is SMF -projective.
(5) There exists an exact sequence 0 → Bn → Bn−1 → ... → B1 → B0 → A → 0 with

each Bi SMF -projective.

Proof. (2) ⇒ (1) and (4) ⇒ (5) are trivial.
(1) ⇒ (4) Let 0 → C → Bn−1 → ... → B1 → B0 → A → 0 be an exact sequence

with each Bi projective. Then Exti
R(C,B) ∼= Extn+i

R (A,B) = 0 for any max-flat right
R-module B and i ≥ 1 by (1). So C is SMF -projective by definition.

(4) ⇒ (3) Let 0 → C → Bn−1 → ... → B1 → B0 → A → 0 be an exact sequence with
each Bi projective. Then Extn+1

R (A,B) ∼= Ext1
R(C,B) = 0 for any B ∈ S MF ⊥.

(3) ⇒ (2) For any B ∈ S MF ⊥, consider the short exact sequence 0 → B → E → C →
0 with E injective. Then the sequence Extn+1

R (A,C) → Extn+2
R (A,B) → Extn+2

R (A,E) = 0
is exact. Since E ∈ S MF ⊥, C ∈ S MF ⊥ by Lemma 3.5, and so Extn+1

R (A,C) = 0 by
(3). Therefore Extn+2

R (A,B) = 0, and (2) holds by induction.
(5) ⇒ (1) Let B be a max-flat right R-module and K1 = ker(B0 → A), Ki =

ker(Bi−1 → Bi−2) for i ≥ 2. Since each Bi is SMF -projective, we get that Extn+i
R (A,B) ∼=

Extn+i−1
R (K1, B) ∼= ... ∼= Exti

R(Bn, B) = 0 for any i ≥ 1. So, mfpd(A) ≤ n. �
Now we set out to investigate how MF-projective dimension behave in short exact

sequences. It is easy to check the following result.

Proposition 3.7. Let R be a ring, 0 → A → B → C → 0 an exact sequence of right
R-modules. If two of mfpd(A),mfpd(B),mfpd(C) are finite, so is the third. Moreover:

(1) mfpd(B) ≤ sup{mfpd(A),mfpd(C)};
(2) mfpd(A) ≤ sup{mfpd(B),mfpd(C) − 1};
(3) mfpd(C) ≤ sup{mfpd(B),mfpd(A) + 1}.
(4) If 0 < mfpd(A) < ∞ and B is SMF -projective, then mfpd(C) = mfpd(A) + 1.

Now we are in the position of characterizing the rings with finite MF -projective dimen-
sion.

Theorem 3.8. Let R be a ring, n a nonnegative integer. The following are equivalent.
(1) rmfpD(R) ≤ n.
(2) mfpd(A) ≤ n for any cyclic right R-module A.
(3) id(A) ≤ n for all max-flat right R-modules A.
(4) id(A) ≤ n for all right R-modules A ∈ S MF ⊥.

Proof. (1) ⇒ (2) and (4) ⇒ (3) are trivial.
(3) ⇒ (1) Let A be any right R-module and B a max-flat right R-module. Since

id(B) ≤ n, Extn+i
R (A,B) = 0 for any i ≥ 1. Hence mfpd(A) ≤ n by definition.

(2) ⇒ (4) Let A ∈ S MF ⊥ and I be a right ideal of R. So mfpd(R/I) ≤ n, whence
by Proposition 3.6, Extn+1

R (R/I,A) = 0 for any n ≥ 0. Thus id(A) ≤ n. �

We show in Proposition 2.11 that R is a QF ring if and only if every right R-module
is (S)MF -projective. The following corollary gives a new characterization of QF rings by
using the MF -projective modules.
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Corollary 3.9. Let R be a ring. The following are equivalent.
(1) R is a QF -ring.
(2) rmfpD(R) = 0.
(3) Every cyclic right R-module is SMF -projective.
(4) Every max-flat right R-module is injective.
(5) Every quotient module of an injective right R-module is MF -projective.

Moreover, if R is a right max-coherent right C-ring, then the above conditions are
equivalent to:

(6) Every simple right R-module is MF -projective.
(7) R is a right max-injective ring.

Proof. By Proposition 2.11 and Theorem 3.8, it is enough to show that (5) ⇒ (4) and
(6) ⇒ (7) ⇒ (1).

(5) ⇒ (4) For any max-flat right R-module F , there exists an exact sequence 0 → F →
E → B → 0 with E injective. Then B is MF -projective by (5), and so Ext1

R(B,F ) = 0.
Thus the above short exact sequence splits, which implies that F is injective.

(6) ⇒ (7) Since every simple right R-module is MF -projective, every max-flat right
R-module is max-injective by Lemma 2.12. This means that every flat right R-module is
max-injective. Thus R is a right max-injective ring.

(7) ⇒ (1) Let A be a projective right R-module. So A is a direct summand of a free
module R(I), for some index set I. Since R is a right max-injective ring, R(I) is a max-
injective right R-module by [27, Proposition 2.4(2)], and so A is max-injective. Also since
R is a right C-ring, A is injective by [24, Lemma 4]. Thus R is a QF ring. �

Next, we introduce and study MF -hereditary rings. But, first, recall that a ring R is
called right hereditary if every right ideal is projective. It is known that a ring R is right
hereditary if and only if every submodule of a projective right R-module is projective (see
[23, Theorem 4.23]). We shall say that a ring R is right MF -hereditary if every right ideal
of R is MF -projective. The next theorem gives some characterizations of such rings.

Corollary 3.10. Let R be a ring. The following are equivalent.
(1) rmfpD(R) ≤ 1.
(2) id(A) ≤ 1 for all max-flat right R-modules A.
(3) R is right MF -hereditary.
(4) Every submodule of any MF -projective right R-module is MF -projective.
(5) Every submodule of any projective right R-module is MF -projective.
(6) Every submodule of any free right R-module is MF -projective.

Proof. (4) ⇒ (5) ⇒ (6) ⇒ (3) are trivial.
(1) ⇔ (2) follows by Theorem 3.8.
(2) ⇒ (4) Let B be a submodule of an MF -projective right R-module A. Consider

the short exact sequence 0 → B → A → A/B → 0. Then for any max-flat right R-
module F , we get an exact sequence 0 = Ext1

R(A,F ) → Ext1
R(B,F ) → Ext2

R(A/B,F ).
Since id(F ) ≤ 1, it follows that Ext2

R(A/B,F ) = 0. So Ext1
R(B,F ) = 0, whence B is

MF -projective.
(3) ⇒ (2) Let F be a max-flat right R-module and I a right ideal of R. Consider

the short exact sequence 0 → I → R → R/I → 0. Since I is MF -projective, we have
0 = Ext1

R(I, F ) → Ext2
R(R/I, F ) → Ext2

R(R,F ) = 0. Thus Ext2
R(R/I, F ) = 0 and so

id(F ) ≤ 1. �

It is obvious that every right hereditary ring is right MF -hereditary. The following is
an example of a right non-hereditary ring R such that every right ideal is MF -projective.
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Example 3.11. Let R be a non-semisimple QF ring. Since by Proposition 2.11, every
right R-module is MF -projective over a QF ring R, R is a right MF -hereditary ring. But
R is a non-hereditary ring, otherwise it would be semisimple.

Now we discuss the relations between the class of right MF -hereditary rings and the
well-known class of right hereditary rings.

Corollary 3.12. Consider the following statements for a ring R:
(1) R is right MF -hereditary and left max-hereditary.
(2) R is right MF -hereditary and every MF -projective right R-module is projective.
(3) R is right hereditary.

Then (1) ⇒ (2) ⇔ (3).

Proof. (2) ⇒ (3) is clear.

(1) ⇒ (2) Let A be an MF -projective right R-module. Since R is left max-hereditary,
A is projective by Proposition 2.5.

(3) ⇒ (2) Assume R is right hereditary. Let A be an MF -projective right R-module.
Consider the exact sequence 0 → B → F → A → 0 with F projective. Since R is right
hereditary, B is projective and so Ext1

R(A,B) = 0. This implies that 0 → B → F → A → 0
splits, whence A is projective. �

4. Max-flat preenvelopes which are epimorphisms
Recall by [27, Theorem 2.5] that over a left max-coherent ring R, every right R-module

has a max-flat preenvelope. It is shown that over a left max-coherent ring R, every right
R-module has a monic max-flat preenvelope if and only if R is a left max-injective ring
([27, Theorem 2.11]). It is well known that every right R-module has an epic flat envelope
if and only if R is a left semihereditary ring ([21, Corollary 4.3]). In this section, we
consider when every R-module has an epic max-flat preenvelope.

The following lemma gives a characterization of max-flat modules in terms of s-purity.

Lemma 4.1. A right R-module A is max-flat if and only if any short exact sequence
ending with A is s-pure.

Proof. Let 0 → C → B → A → 0 be an exact sequence. Since A is max-flat, for any
maximal left ideal I of R, we have the exact sequence 0 = TorR

1 (A,R/I) → C⊗R/I → B⊗
R/I → A⊗R/I → 0. So the exact sequence 0 → C → B → A → 0 is s-pure. Conversely,
let 0 → B → F → A → 0 be an s-pure exact sequence with F projective. For any maximal
left ideal I of R, we have the exact sequence 0 = TorR

1 (F,R/I) → TorR
1 (A,R/I) →

B ⊗ R/I → F ⊗ R/I. Since B ⊗ R/I → F ⊗ R/I is monic, TorR
1 (A,R/I) = 0. Hence, A

is max-flat. �

Unlike the generation of pure submodules the notions of s-pure and neat submodules
are not only inequivalent they are also incomparable. Recently, the commutative rings for
which the notions of s-pure and neat submodules are equivalent are completely character-
ized in [19, Theorem 3.7]. These are exactly the commutative rings whose maximal ideals
are finitely generated and locally principal. A right module A is called neat-flat if for any
epimorphism f : B → A, the induced map Hom(S,B) → Hom(S,A) is epic for any simple
right module S, equivalently any short exact sequence ending with A is neat-exact (see
[3]). Together with Lemma 4.1 and [3, Lemma 2.3.], we obtain the following.
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Corollary 4.2. Let R be a commutative ring whose maximal ideals are finitely generated
and locally principal and let A be an R-module. Then the following are equivalent.

(1) A is max-flat.
(2) A is neat-flat.
(3) A is simple projective, i.e. for any simple R-module S, every homomorphism

f : S → A factors through a finitely generated free R-module F .

If R is a left max-hereditary ring, then every MF-projective right module is projective
by Proposition 2.5. Now for the converse, we have the following characterizations of
max-hereditary rings.

Theorem 4.3. Let R be a commutative ring whose maximal ideals are finitely generated
and locally principal. The following are equivalent.

(1) R is max-hereditary.
(2) Every MF -projective R-module is projective.
(3) Every MF -projective R-module is flat.
(4) Every finitely presented MF -projective R-module is projective.
(5) Every simple R-module has an epic projective preenvelope.
(6) Every simple R-module has an epic max-flat preenvelope.
(7) Every R-module has an epic max-flat preenvelope.
(8) Every submodule of a max-flat R-module is max-flat.

Proof. (1) ⇒ (2) is by Proposition 2.5.
(2) ⇒ (3) and (7) ⇒ (6) are clear.
(6) ⇒ (5) ⇒ (8) is by Corollary 4.2 and [18, Theorem 3.7].
(3) ⇒ (4) Let A be a finitely presented MF -projective R-module. Then A is flat by

(3), and so is projective since A is finitely presented.
(4) ⇒ (5) Let S be a simple R-module. Since R is max-coherent, S has a max-flat

preenvelope ψ : S → F with F max-flat. So ψ factors through a finitely generated free
module P by Corollary 4.2. This means that there exist homomorphisms f : S → P
and g : P → F such that gf = ψ. Let B = Im(f), β : S → B and A = P/B.
Now, we claim that the inclusion map i : B → P is a max-flat preenvelope of B. Let
h : B → M be a homomorphism with M max-flat. Then there exists a homomorphism
ϕ : F → M such that ϕgf = ϕgiβ = hβ. Since β is epic, h = (ϕg)i. This proves our
claim, whence A is MI-flat by [27, Proposition 3.7(1)]. Since A is finitely presented, A
is MF -projective by Proposition 2.9(2), and so is projective by the hypothesis. Thus the
splitting of 0 → B → P → A → 0 says that B is projective. Hence S → B is a projective
preenvelope which is an epimorphism.

(8) ⇒ (1) Let B be a factor of a max-injective R-module A. Then the exact sequence
0 → C → A → B → 0 induces the exactness of 0 → B+ → A+ → C+ → 0. Since A+ is
max-flat by [27, Theorem 2.3], B+ is max-flat by (8) and so B is max-injective. Hence by
[1, Proposition 1.2], R is max-hereditary.

(8) ⇒ (7) For any R-module A, there is a max-flat preenvelope f : A → B. Note that
Im(f) is max-flat by (8), so A → Im(f) is an epic max-flat preenvelope. �
R is called a right PS ring [20] if every simple right ideal is projective. It is shown that

every submodule of any neat-flat right R-module is neat-flat if and only if R is a right PS
ring ([2, Theorem 5.3]). As a consequence of Corollary 4.2 and Theorem 4.3, we obtain a
new characterization of max-hereditary rings.

Corollary 4.4. Let R be a commutative ring whose maximal ideals are finitely generated
and locally principal. The following are equivalent.

(1) R is a max-hereditary ring.
(2) R is a PS ring.



482 Y. Alagöz

References
[1] Y. Alagöz, On m-injective and m-projective modules, Math. Sci. Appl. E-Notes, 8,

46–50, 2020.
[2] E. Büyükaşık and Y. Durğun, Absolutely s-pure modules and neat-flat modules,

Comm. Algebra, 43 (2), 384–399, 2015.
[3] E. Büyükaşık and Y. Durğun, Neat-flat modules. Comm. Algebra 44 (1), 416-428,

2016.
[4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Frontiers in Math-
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