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ABSTRACT

We analyze integrability for the derivative formulas of the rotation minimizing frame in the
Euclidean 3-space from a viewpoint of rotations around axes of the natural coordinate system.
We give a theorem that presents only one component of the indirect solution of the rotation
minimizing formulas. Using this theorem, we find a lemma which states the necessary condition
for the indirect solution to be a steady solution. As an application of the lemma, the natural
representation of the position vector field of a smooth curve whose the rotation minimizing vector
field (or the Darboux vector field) makes a constant angle with a fixed straight line in space is
obtained. Also, we realize that general helices using the position vector field consist of slant helices
and Darboux helices in the sense of Bishop.
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1. Introduction

1.1. Short History of Curves

The Frenet equations were originally introduced in 1831 by Karl Eduard Senff and Johann Martin Bartels,
gaining simplicity and usefulness to the theory of space curves. In 1847, they were reintroduced in the
dissertation of Jean Frederic Frenet, which was published in 1852. Soon after, those equations were found
independently by Joseph Alfred Serret in 1851, and are sometimes called Frenet-Serret equations (for
details on this early history, see [17]). The achievement of the Frenet approximation for a space curve was
emerged around 1880 by the French mathematician, Jean Gaston Darboux, with the describing of the vector
w = τT + κB. The instantaneous change of the Frenet frame can be measured with a rotation around this
vector. On the other hand, since the principal normal vector field always points to the center of curvature, one
may see that there exists unnecessary-rotation in the frame. Although the Frenet frame is the most basic tool
used to solve many problems in the field of biology, mechanics and engineering, etc., especially because of
the unnecessary-rotation, it loses its function for many areas such as camera, fluid flow, visualization, robotic,
integrable system and quantum mechanics. Therefore, the first thing that comes to mind is the question of
whether there is a moving frame with the property of minimum bending. In [7], the admissible answer has
been given by Richard Lawrence Bishop as ”there is more than on way to frame a curve”. It is generally
called Bishop frame. He performed this by showing that parallel fields over a C2 regular curve are formed
a three-dimensional vector space over R, and thus it is sometimes called a relatively parallel adapted frame.
In recent years, looking at basic literature on this frame, the readers will observe another name due to the
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property of the minimum bending, which is called rotation-minimizing frame (briefly RMF).

1.2. Literature Review on Position Vector Field of a Curve

There exist two main methods to determine the position vector field of a smooth curve as follows:

• According to the moving frame
• According to the standard frame.

The first one is to create a system of ordinary differential equations by writing the smooth curve to be linear
in terms of moving frame vectors with differentiable function coefficients. The second one is to convert the
derivative formulas consisting of three vector differential equations into a single vector differential equation.
Surveys on them are listed below:

In 2010, Ahmed Tawfiq Ali and his coauthor investigated the problem of determining the position vector
field of a smooth curve satisfying a geometric property that the principal normal vector field makes a constant
angle with a fixed straight line, which is called slant helix. They found a vector differential equation of third
order that accepts the principal normal vector field as the dependent variable. Thus, the position vector field
of a timelike slant helix with respect to standart frame of Minkowski space was obtained according to natural
equations such that the straight line is parallel to e3, which is a special solution of this vector differential
equation [1]. For slant helices in the Euclidean 3-space, see [2].

In 2011, similar work was done to find the position vector field of a general helix with respect to both Frenet
frame and standart frame in Euclidean 3-space [3]. For timelike and spacelike general helices in Minkowski
3-space, respectively, see [4, 5].

In 2012, Ali found the position vector field of an arbitrary curve with respect to both methods in Galilean
3-space. As an application, he obtained that of some special curves such as straight line, plane curve, circular
helix, general helix, Salkowski curve and anti-Salkowski curve in Galilean 3-space [6]

In 2014, the authors found the position vector field of a general helix in Galilean 3-space through a vector
differential equation of fourth order [16].

In 2014, the authors proved that the position vector field of an arbitrary curve with respect to Frenet frame
(i.e. moving frame) in Galilean 3-space satisfies a vector differential equation of second and fourth-order.
Moreover, they found the position vector of a unit speed rectifying curve [18].

Except for the methods above, the position vector field of special curves such as helix and slant helix can
also be obtained by using the associated curves and the helical surfaces. In [10], the authors described two new
concepts from a Frenet curve in the 3-dimensional Euclidean space, which are called principal direction curve
and principal donor curve, and they provided a method to construct general helices and slant helices through
these curves. Subsequently, analogues of this problem are done in 3-dimensional Lorentz-Minkowski space R3

1,
3-dimensional Compact Lie group G, anti-de Sitter 3-space H3

1 and three-and four-dimensional Galilean space
G3,4 [11, 12, 14, 15]. Finally, in 2016, Pascual Lucas and Jose Antonio Ortega-Yagues presented two methods to
create slant helices in helix surfaces [13].

1.3. Motivation

In the previous part, it is mentioned that the problem of determining a natural representation of the position
vector field for a smooth curve with respect to the Frenet frame has been investigated by the aforementioned
methods, and consequently, the position vector field of special curves such as general helices and slant helices
has been computed in the natural representation form. The most key point of the methods used to find this
representation is that the first two vector fields (denoting by T and N ) of the Frenet frame have a direct
connection with each other. When it comes to the position vector field of a smooth curve wrt the rotation
minimizing frame, it is clear that the presented methods are inadequate due to the lack of the connection
which we referred to above. Therefore, our motivation is to present a new method that fills the scientific gap
in the position vector field with respect to the rotation minimizing frame.

2. Preliminaries

When we equip the real vector space R3 with the standart flat metric (called the Euclidean metric, generally)
given by:

g = dx2 + dy2 + dz2,
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the resulting space called as the Euclidean space and denoted by E3, where (x, y, z) is an usual coordinate
system of E3. The norm of an arbitrary vector w ∈ E3 is defined as ‖w‖ =

√
g(w,w). Also, for two non-zero

vectors u = (u1, u2, u3) and v = (v1, v2, v3) in E3, recall that the cross product of u and v is defined as

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .
Let r : I → E3 be a smooth curve parametrized by the arbitrary parameter t, where I is an open subset of R.

Its norm is given by ‖r‖ =
√
g(r, r) and r is called a unit speed curve parametrized by the arc lenght s if its

velocity vector r′, i.e. the first derivative of the curve, satifies ‖r′‖ = 1. From now on, the parameter of r will
always be s. When denoting the Frenet-Serret frame along the curve r by {T,N,B} in the Euclidean 3-space,
its derivative formula is given by  T ′

N ′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 ,

where κ and τ are the curvature and the torsion functions of r, respectively.

On the other hand, the derivative formulas of the rotation minimizing frame denoted by {T,M1,M2} along
r are below:  T ′

M ′1
M ′2

 =

 0 k1 k2
−k1 0 0
−k2 0 0

 T
M1

M2

 , (2.1)

where k1 and k2 are the rotation minimizing curvature functions of r and M1,M2 are arbitrary unit vector
fields in E3. The geometric apparatus between the rotation minimizing frame and the Frenet-Serret frame,
which we referred to before, are given by T

N
B

 =

 1 0 0
0 cosµ(s) − sinµ(s)
0 sinµ(s) cosµ(s)

 T
M1

M2

 ,

κ =
√
k21 + k22, (2.2)

τ = µp(s)

where µ(s) = arctan
(
k1
k2

)
[7]. By Eq. (2.2) and the angle µ, we have the following theorem:

Theorem 2.1. Let r = r(s) be a smooth curve with rotation minimizing curvatures k1 6= 0 and k2 6= 0. Then, r is a
general helix if and only if the rotation minimizing curvatures of the curve satisfy

k21

(k21 + k22)
3
2

(
k2
k1

)p
= constant

3. Integrability for the rotation minimizing formulas

The problem of finding two functions of one parameter (obviously, the curvatures k1 and k2) of a given
smooth curve is investigated in differential geometry courses at undergraduate level. The reverse problem is,
however, at graduate level, and it is called as the determination of a natural representation of the position
vector field for a smooth curve or known as solving natural (intrinsic) equations. For the rotation minimizing
frame {T,M1,M2}, one may regard Eq. (2.1) as the following form:

dT
ds = f(s, T,M1,M2)

dM1

ds = g(s, T,M1,M2)

dM2

ds = h(s, T,M1,M2),
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where the functions f , g and h are considered to be linear functions with coefficients that depend on s.
Examining the above system, the readers see a system of vector differential equations in which T , M1 and
M2 are dependent variables. As it is known, the most important fact in the theory of differential equations
is to ensure the existence and uniqueness of their solutions. In the Euclidean 3-space, the existence and
uniqueness of solutions for Frenet formulas in the fundamental theorem of the local theory of curves have
been explicitly expressed and proved in Manfredo Do Carmo’s book published in 1976, considering a system
of nine differential equations (for details, the readers can look at the book named Differential Geometry of Curves
and Surfaces) [9]. On the other hand, despite the fact that the existence and uniqueness of the solution curve
for each differentiable curvature functions are guaranteed, solutions can be long, complicated and in general
not obtained by integration, i.e may not be steady. In relation to that, as mentioned in the introduction section,
the general case is still an open problem, and there are only solutions for a few types of special curves, in fact,
no solution could be developed in the rotation minimizing frame. Naturally, it appears the following question
supporting the motivation of our work:

Question 1. Is it possible to present a new method in such a way that the derivative formulas of the rotation minimizing
frame in the Euclidean 3-space E3 can easily be integrated?

Let E3 endow the Euclidean 3-space. It is well-known that a natural orthonormal basis of E3 that B =
{e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)}. We suppose the coordinates of a vector with respect to B that
{x, y, z}. We set up another ordered orthonormal basis B′′ = {e′′1 , e′′2 , e′′3} and the new coordinate system
{x′′, y′′, z′′} associated with it using the following rotations, respectively, by means of {x, y, z}

• around the z-axis
• around the x′ axis
• around the y′′ axis

such that

e′′j =
e′′1×ei
‖e′′1×ei‖

, j = 2, 3, i = 1, 2, 3

(
e′′1 × e′′j

)
=

{
e′′3 , j = 2
−e′′2 , j = 3.

Note that y′′ is obtained after first two rotations.

Figure 1. The new coordinate system associated with standard coordinate system.
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Let r : I → E3 be a smooth curve parametrized by the arc length s such that r′′(s) 6= 0, s ∈ I and let
{T,M1,M2, k1, k2} be its RMF apparatus at the point r(s). Now, assume that an arbitrary curve

−
r derives from

the curve r by a rigid motion in such a way that the tangent vector field
−
T at the point

−
r(s0) of

−
r coincides

with the vector field e′′1 . As a result of this rigid motion,
−
M1 and

−
M2 lie in the plane spanned by e′′2 and e′′3 . Note

that the remaining vector fields of
−
r denote by

−
M1 and

−
M2, respectively. Thereby, it is natural to talk about a

transition matrix between the systems
{
−
T ,
−
M1,

−
M2

}
and {e1′′, e2′′, e3′′}, and its form is as follows:


−
T
−
M1
−
M2

 =

 1 0 0
0 cos θ(s) − sin θ(s)
0 sin θ(s) cos θ(s)

 e′′1
e′′2
e′′3

 , (3.1)

where θ is an angle between the vector fields
−
M1 and e′′2 .

Figure 2. The location of the rotation minimizing vector fields of the desired curve in the new coodinate system.

On the other hand, it should be remarked that the rigid motion which takes
−
r(s0) into r(s0) and

−
T ,
−
M1,

−
M2

into T,M1,M2 is actually same with the rigid motion reffered to above. Thus, we have

T =
−
T , M1 =

−
M1, M2 =

−
M2

for every points s = s0.

Writing i = 1 and j = 2 by reasoning as e′′1 =
−
T = T = (T1, T2, T3), we have the basis vectors of the new

coordinate system as follows:

e′′2 =
1√

1− T 2
1

(0, T3,−T2) (3.2)

and
e′′3 =

−1√
1− T 2

1

(
1− T 2

1 ,−T1T2,−T1T3
)
. (3.3)

Thus, we have the following theorem.
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Theorem 3.1. Let T (s), M1(s), M2(s), s ∈ I be three orthonormal unit vectors of the rotation minimizng frame in
E3 and let Eq. (2.1) be its derivative formula. Given differentiable functions k1(s) and k2(s), the tangent vector field
T = (T1, T2, T3) in an indirect solution triplet of Eq. (2.1) is represented in the form


T1(s) = sin f(s)

T2(s) = cos f(s) cos g(s)

T3(s) = cos f(s) sin g(s)

such that

f(s) = c1 +

∫
(sin θ(s) k1(s)− cos θ(s) k2(s)) ds, (3.4)

g(s) = c2 +

∫
− cos θ(s) k1(s)− sin θ(s) k2(s))

cos f(s)
ds (3.5)

where c1 and c2 are constants of integration.

Proof. In this proof, we shall use the base vectors of the new coordinate system. Writing i = 1, j = 2 into Eq.(3.1)
and reasoning as e′′1 = T = (T1, T2, T3), Eqs. (3.2) and (3.3) hold. Also, from Eq. (3.1), a relationship between
rotation minimizing vector fields and the vector fields of the new system becomes

M1(s) = cos θ(s) e2
′′(s)− sin θ(s) e3

′′(s)
M2(s) = sin θ(s) e2

′′(s) + cos θ(s) e3
′′(s).

(3.6)

We now calculate the components of the tangent vector field T (s). Writing Eqs. (3.2) and (3.3) into Eq. (3.6)
and substituting it into Eq. (2.1), we have

dT1
ds

= {sin θ(s) k1(s)− cos θ(s) k2(s)}
√

1− T 2
1 , (3.7)

dT2
ds

=
1√

1− T 2
1

[
{ cos θ(s) k1(s) + sin θ(s) k2(s)}T3 + { cos θ(s) k2(s)− sin θ(s) k1(s)}T1T2

]
, (3.8)

dT3
ds

=
−1√
1− T 2

1

[
{ cos θ(s) k1(s) + sin θ(s) k2(s)}T2 + { sin θ(s) k1(s)− cos θ(s) k2(s)}T1T3

]
. (3.9)

Since Eq. (3.7) is a seperable differential equation, it is easier to solve than others and so the solution becomes

T1 = sin

[
c1 +

∫
( sin θ(s) k1(s)− cos θ(s) k2(s)) ds

]
︸ ︷︷ ︸

=f(s)

. (3.10)

On the other hand, since Eqs. (3.8) and (3.9) are non-linear differential equations, it is quite advantageous to
define a new variable g(s) instead of solving them, satisfying the following statement:

T 2
1 + T 2

2 + T 2
3 = 1,

from which
T2 = cos f(s) cos g(s), T3 = cos f(s) sin g(s). (3.11)

Putting Eqs. (3.10) and (3.11) into Eq. (3.8), we have the following variable after a straightforward
computations:

g(s) = c2 +

∫
(− cos θ(s) k1(s)− sin θ(s) k2(s))

cos f(s)
ds,

which completes the proof.
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4. Applications

One of the important areas of study of the differential geometry is the theory of curves that serves a wide
range of application areas from biological molecules (DNA, many proteins, etc.) to material science (carbon
nano-tube, magnetic field, helical pipes, α-helix, etc.). The common property of the curves observed in these
areas is that either the vector field or the Darboux vector of the moving frame makes a constant angle with a
fixed line in space. For the rotation minimizing frame, there are two curves having the property which refers
to above, respectively:

Bishop Slant Helix: A smooth curve is said to be a Bishop slant helix if the vector field M1 (or M2) makes
a constant angle with a fixed line in space. Analytically, it characterizes by the constancy of the ratio of the
rotation minimizing curvatures k1 and k2, given by B. Bükcü and M. K. Karacan in the Euclidean 3-space E3

[8].
Darboux Helix: A smooth curve is said to be a Darboux helix if the unit Darboux vector w0 = w

‖w‖ =
1√
k21+k

2
2

(−k2M1 + k1M2) makes a constant angle with a fixed line in space. The other approach for the Darboux

helix is that the spherical indicatrix of the Darboux vector belongs to a circle or a part of circle. With this
approach, we see that the curvatures k1 and k2 of a Darboux helix satisfy the following equation

(
k21 + k22

) 3
2

k21

1(
k2
k1

)p = constant. (4.1)

In Eq. (4.1), remark that the ratio k2
k1

must not be constant. According to the theorem (2.1), a Bishop slant helix
is a general helix, but not a Darboux helix.

In the previous section, a new coordinate system is introduced in such a way that rotation minimizing
frame’s derivative formulas are integrable. As a result of this, we obtain a theorem that presents only one
component of the indirect solution triplet of Eq. (2.1). In this section, we analyze the necessary condition
for the indirect solution to be a steady solution. Interpreted another way, we evaluate what the integration
measure is.

For this, we begin with finding the vector fields M1 and M2 for the tangent vector field T in the Theorem 3.1:

Substituting Eqs. (3.2) and (3.3) into Eq. (3.6), for M1 = (M11 ,M12 ,M13) and M2 = (M21 ,M22 ,M23), we get M11 = sin θ cos f
M12 = cos θ sin g − sin θ sin f cos g
M13 = − cos θ cos g − sin θ sin f sin g

(4.2)

and  M21 = − cos θ cos f
M22 = sin θ sin g + cos θ sin f cos g
M23 = − sin θ cos g + cos θ sin f sin g.

(4.3)

In relation to that, our aim is to find the curvatures
−
k1 and

−
k2 of the curve

−
r , respectively. It is well-known that

the curvatures of a curve are invariant up to a rigid motion. For this reason, the curvatures
−
k1 and

−
k2 must

provide the following equalities:

k1 =
−
k1, k2 =

−
k2,

where k1 and k2 are the curvatures of the curve r. By differentiating Eq. (4.2) with respect to s, we have

(M ′11)
2 = cos2 θ cos2 f

(
dθ

ds

)2

+ sin2 θ sin2 f

(
df

ds

)2

− 2 sin θ cos θ sin f cos f

(
dθ

ds

)(
df

ds

)
www.iejgeo.com 122

http://www.iej.geo.com


Yerlikaya F. & Aydemir İ

(M ′12)
2 =

[
cos2 θ sin2 f cos2 g + 2 cos θ sin θ sin f cos g sin g + sin2 θ sin2 g

](dθ
ds

)2

+
[
sin2 θ sin2 f sin2 g + 2 cos θ sin θ sin f cos g sin g + cos2 θ cos2 g

](dg
ds

)2

+sin2 θ cos2 f cos2 g

(
df

ds

)2

+ 2
[
sin θ cos θ sin f cos f cos2 g + sin2 θ cos f sin g cos g

](dθ
ds

)(
df

ds

)
− 2

[
sin θ cos θ sin2 f cos g sin g + cos2 θ sin f cos2 g + sin2 θ sin f sin2 g + sin θ cos θ sin g cos g

](dθ
ds

)(
dg

ds

)
− 2

[
sin θ cos θ cos f cos2 g + sin2 θ sin f cos f sin g cos g

](df
ds

)(
dg

ds

)

(M ′13)
2 =

[
cos2 θ sin2 f sin2 g − 2 cos θ sin θ sin f cos g sin g + sin2 θ cos2 g

](dθ
ds

)2

+
[
sin2 θ sin2 f cos2 g − 2 cos θ sin θ sin f cos g sin g + cos2 θ sin2 g

](dg
ds

)2

+sin2 θ cos2 f sin2 g

(
df

ds

)2

+ 2
[
sin θ cos θ sin f cos f sin2 g − sin2 θ cos f sin g cos g

](dθ
ds

)(
df

ds

)
+ 2

[
sin θ cos θ sin2 f cos g sin g − cos2 θ sin f sin2 g − sin2 θ sin f cos2 g + sin θ cos θ sin g cos g

](dθ
ds

)(
dg

ds

)
+ 2

[
− sin θ cos θ cos f sin2 g + sin2 θ sin f cos f sin g cos g

](df
ds

)(
dg

ds

)
,

from which

M ′11 = cos θ cos f
dθ

ds
− sin θ sin f

df

ds

M ′12 = {− cos θ sin f cos g − sin θ sin g} dθ
ds
− sin θ cos f cos g

df

ds
+ {sin θ sin f sin g + cos θ cos g} dg

ds

M ′13 = {− cos θ sin f sin g + sin θ cos g} dθ
ds
− sin θ cos f sin g

df

ds
− {sin θ sin f cos g − cos θ sin g} dg

ds
.

From the above relations, we find
−
k1 =

√(
dθ

ds
+ sin f

dg

ds

)2

+ k21.

In a similar way, it is easy to see that another curvature is given by

−
k2 =

√(
dθ

ds
+ sin f

dg

ds

)2

+ k22.

By this way, we have the following lemma that states a criteria for the integration measure.

Lemma 4.1. Let r(s) be a curve parametrized by the arc-length s in the Euclidean 3-space E3 and the differentiable
functions k1(s) and k2(s) be the rotation minimizing curvatures of r. If the following relation holds

dθ

ds
+ sin f(s)

dg

ds
= 0, (4.4)

then there exist ”steady” solutions satisfying Eq. (2.1), where f(s) and g(s) are given by Eqs. (3.4) and (3.5), respectively.

123 www.iejgeo.com

http://www.iej.geo.com


Integrability for the Derivative Formulas of Rotation Minimizing Frame...

From Lemma 4.1, we can consider two cases as follows:

Case 1 When θ = constant, Eq. (4.4) is reduced to

sin f(s)
dg

ds
= 0

Subcase 1.1 (sin f(s) = 0). This means that f = 0 or f = 2πk, k ∈ Z. From this fact, it is possible to regard the
integrand in Eq. (3.4) as

sin θ k1(s)− cos θ k2(s) = 0. (4.5)

The last equality implies that the following relations hold:

• If sin θ = 0, then k2 = 0, which is a contradiction.
• If cos θ = 0, then k1 = 0, which is a contradiction.
• If sin θ 6= 0 and cos θ 6= 0, the desirable curve is a Bishop slant helix with

k2
k1

= tan θ0 = m 6= 0,

where θ0 is determined by the curvatures.

Observe that the other function g(s) can be found according to the above relation using Eq.(4.5) such that

g(s) = c2 +
m

n

∫
k1(s) ds, (4.6)

where m = n√
1−n2

. Also, we can find its straight line d = (a, b, c) using Eq. (4.2):

g(M1, d) =
m√

1 +m2
a+

1√
1 +m2

{b sin g(s)− c cos g(s)} .

According to the definition of Bishop slant helices, the above dot product is constant if and only if the following
relations hold:

b sin g(s)− c cos g(s) = 0,

a = ±1,

from which, we get d = (±1, 0, 0). This gives information about the plane in which the straight line is spanned.
Note that g(M1, d) = n.

Subcase 1.2 (dgds = 0). This means that g = constant. From this fact, it is possible to regard the integrand
in Eq. (3.5) as

− cos θ k1(s)− sin θ k2(s) = 0. (4.7)

From the last equality, we have the following relations:

• If cos θ = 0, then k2 = 0, which is a contradiction.
• If sin θ = 0, then k1 = 0, which is a contradiction.
• If cos θ 6= 0 and sin θ 6= 0, the desirable curve is a Bishop slant helix with

k2
k1

= − cot θ1 = m,

where θ1 = π
2 + θ0.

Observe that the other function f(s) can be found according to the above relation using Eq.(4.7) such that

f(s) = c1 +
m

n

∫
k1(s) ds, (4.8)
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where m = n√
1−n2

. Also, we can find its straight line d = (a, b, c) using Eq. (4.2):

g(M1, d) =
−1√
1 +m2

sin f {b cosC + c sinC}+ a√
1 +m2

cos f +
m√

1 +m2
{b sinC − c cosC} ,

where C is determined by the constancy of g. According to the definition of a Bishop slant helix, the above dot
product is constant if and only if the following relations hold:

b cosC + c sinC = 0,

b sinC − c cosC = 1,

a = 0,

from which, we get d = (0,− sinC, cosC). This gives information about the plane in which the straight line is
spanned. Note that g(M1, d) = n.

Now, together with the subcases (1.1) and (1.2), putting Eqs. (4.5-4.6) and (4.7-4.8) into the Theorem 3.1, we
have the following propositions that present the natural representations of the position vector field of a Bishop
slant helix with Sp {e1} and Sp {e2, e3}, respectively:

Proposition 4.1. Let r be a Bishop slant helix in E3 with curvature function k1. Thus, its position vector field is computed
in the natural representation form as follows:

r(s) =

(
d1,

∫
cos

[
c2 +

m

n

∫
k1(s) ds

]
ds+ d2,

∫
sin

[
c2 +

m

n

∫
k1(s) ds

]
ds+ d3

)
where c2 and di for i = 1, 2, 3 are constants of integration, m = n√

1−n2
, n = sin[θ0] and θ0 is the angle between the fixed

straight line e1 (axis of a Bishop slant helix) and the vector M1 of the curve r.

Proposition 4.2. Let r be a Bishop slant helix in E3 with curvature function k1. Thus, its position vector field is computed
in the natural representation form as follows:

r(s) =

(∫
sin

[
c1 +

m

n

∫
k1(s) ds

]
ds+ d1, cosC

∫
cos

[
c1 +

m

n

∫
k1(s) ds

]
ds+ d2,

sinC

∫
cos

[
c1 +

m

n

∫
k1(s) ds

]
ds+ d3

)
,

where C, c1 and di for i = 1, 2, 3 are constants of integration, m = n√
1−n2

, n = sin[θ0] and θ0 is the angle between the
fixed straight line d = (0,− sinC, cosC) (axis of a Bishop slant helix) and the vector field M1 of the curve r.

Corollary 4.1. A Bishop slant helix with the rotation minimizing curvature functions k1(s) and k2(s) in E3 is a plane
curve having an analytical property such that the ratio of k1(s) to the Frenet curvature κ(s) is constant.

Example 4.1. As an application of the Proposition 4.1., we compute the RMF vector fields of a Bishop slant
helix with d ∈ Sp {e1} for k1(s) = s and m = 1

3 as follows: From Theorem 3.1, we can write

T (s) =

(
0, cos(

√
10

3
s2), sin(

√
10

3
s2)

)
.

From Eqs. (4.2) and (4.3), we have

M1(s) =
1√
10

(
1, 3 sin(

√
10

3
s2), 3 cos(

√
10

3
s2)

)
and

M2(s) =
1√
10

(
−3, sin(

√
10

3
s2), cos(

√
10

3
s2)

)
.

Observe that g(M1, e1) =
m√

1+m2
. Also, by a long computation, we see that κ(s) = 2

√
10
3 s and τ(s) = 0, which

supports the Corollary 4.1.
We now plot it putting d1 = d2 = d3 = c2 = 0 with respect to the axis of the Bishop slant helix.
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Figure 3. The graphic with the color red is d ∈ Sp {e1} and the graphic with the color blue is d ∈ Sp {e2, e3}. The dashed lines represent the axis of the Bishop
slant helices.

We now can consider the last case.

Case 2 When θ 6= constant, we have three subcases as follows:

• f = constant and g = constant
• f 6= constant and g = constant
• f = constant and g 6= constant.

Considering the first two items, we get a contradiction about the fact that θ 6= constant. Thus, this subcases
never occur. We now can consider the last item as follows:

The constancy of the function f implies that

sin θ(s) k1(s)− cos θ(s) k2(s) = 0. (4.9)

Substituting the last relation into Eq. (3.5), we find the other function g as

c2 +
−1
n

∫ √
k21(s) + k22(s) ds, (4.10)

where n = cos c1. Thus, Eq. (4.4) is expressed by

dθ

ds
−m

√
k21(s) + k22(s) = 0,

from which, we get

θ(s) = m

∫ √
k21(s) + k22(s) ds, (4.11)

where m =
√
1−n2

n . From Eqs. (4.9) and (4.11), we obtain

m =
k21

(
k2
k1

)p
(k21 + k22)

3
2

, (4.12)

where since the ratio of k2(s) to k1(s) is non-constant due to Eq. (4.9), m 6= 0. This means that Eq. (4.12) can be
reversible relative to multiplication, that is

1

m
=

(
k21 + k22

) 3
2

k21

1(
k2
k1

)p = constant.
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Also, we can find its straight line d = (a, b, c):

g(w0, d) = −
m√

1 +m2
a+

1√
1 +m2

{b sin g(s)− c cos g(s)} .

According to the definition of Darboux helices, the above dot product is constant if and only if the following
relations hold:

b sin g(s)− c cos g(s) = 0,

a = ±1,
from which, we get d = (±1, 0, 0). This gives information about the plane in which the straight line is spanned.
Note that g(w0, d) = n. By way of Eq. (4.1), putting Eqs. (4.9) and (4.10) into the theorem 3.1, we have a natural
representation of the position vector of a Darboux helix.

Proposition 4.3. Let r be a Darboux helix in E3 and k1(s), k2(s) be the rotation minimizing curvature functions of the
curve. Thus, its position vector field is computed in the natural representation form as follows:

r(s) = n

(
m s+ d1,

∫
cos

(
c2 +

√
1 +m2

∫ √
k21(s) + k22(s) ds

)
ds+ d2,∫

sin

(
c2 +

√
1 +m2

∫ √
k21(s) + k22(s) ds

)
ds+ d3

)
,

where c2 and di for i = 1, 2, 3 are constants of integration, 0 6= m =
√
1−n2

n , n = cos [φ] and φ is the angle between the
fixed straight line e1 (axis of a Darboux helix) and the unit Darboux vector w0 of the curve r.

Remark 4.1. Writing 1 instead of n in the above proposition, one see that the position vector of the Darboux
helix become that of the Bishop slant helix. By this way, we have the following corollary.

Corollary 4.2. General helices consist of slant helices and Darboux helices in the sense of Bishop.

Example 4.2. As an application of the proposition 4.3, we see that a natural representation of the position vector
of the curve having the curvatures k1(s) = tan(arcsinms) and k2(s) = 1 from the family of Darboux helices is
as follows.

r(s) =

(
m√

1 +m2
s+ d1,

1√
1 +m2

∫
cos

[
c2 +

−
√
1 +m2

m
arcsinms

]
ds+ d2,

1√
1 +m2

∫
sin

[
c2 +

−
√
1 +m2

m
arcsinms

]
ds+ d3

)
,

where since the curvature k1 is non-zero, m 6= 0. Also, by a long computation, the torsion of r equals to
−m√

1−(ms)2
. This implies that the smooth curve r is a general helix, but not Bishop slant helix, which supports

the corollary 4.2. Observe that the curve r is a Bishop slant helix if m = 0. We now can plot it putting
d1 = d2 = d3 = c2 = 0 with respect to the specific values of m.

Remark 4.2. In this work, we analyze the results when only i = 1 in order to avoid repetition. The geometric
meaning of results in the case where i = 2 (or i = 3) is the displacement of the components of the curve.

5. Conclusion

The scope of the paper covers two different problems on the same baseline. The first one is to introduce a new
method in such a way that the derivative formulas of the rotation minimizing frame in the Euclidean space
can easily be integrated. The base of this method consists of the new basis vectors resulting in the rotations. In
the formula containing these basis vectors, we choose i = 1. In that case, one can say that the tangent vector
field T might be parallel to the vector field e1. However, it should be remarked that we have not established an
alternative frame on the curve, which is defined at every point. Indeed, we establish a new system by means of
a rigid motion such that the vector field T can coincide with the vector field e′′1 for every appropriate points on
the curve that do not satisfy e1//T . The second one is to compute the position vector field of a smooth curve
having a linear relationship between the rotation minimizing curvatures, which couldn’t be obtained by the
present methods. Thus, we brought a new approach to the open problem which we referred to the prior and
we obtained the position vector field of slant helices and Darboux helices in the sense of Bishop.
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Figure 4. Some Darboux helices with k1(s) = tan(arcsinms), k2(s) = 1 form = 1
5 (red) andm = 1

12 (blue).
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